
Programmers
A P r i m e C o m p a n y G u i d e I '

BIND and EPFs
Revision T3.0-23.0

DOC10055-2LA

Advanced
Programmer's Guide I:
BIND and EPFs

Second Edition

Glenn Morrow
This manual documents the software operation of the PRIMOS operating
system on 50 Series computers and their supporting systems and
utilities as implemented at Master Disk Revision Level 23.0 (Rev. 23.0)
and Translator Family Revision Level T3.0.

Prime Computer, Inc., Prime Park, Natick, Massachusetts 01760

The information in this document is subject to change without notice and should not be
construed as a commitment by Prime Computer, Inc. Prime Computer, Inc., assumes no
responsibility for any errors that may appear in this document
The software described in this document is furnished under a license and may be used or
copied only in accordance with the terms of such license.

Copyright © 1990 by Prime Computer, Inc. All rights reserved.
PRIME, PRIME, PRIMOS, and the Prime logo are registered trademarks of
Prime Computer, Inc. 50 Series, 400,750,850,2250,2350,2450,2455,2550,2655,
2755,2850,2950,4050,4150,4450,6150,6350,6450,6550,6650,9650,9655,9750,
9755,9950,9955,9955II, Prime INFORMATION CONNECTION, DISCOVER,
INFO/BASIC, MIDAS, MIDASPLUS, PERFORM, PERFORMER, PRIFORMA,
Prime INFORMATION, PRIME/SNA, INFORM, PRISAM, PRIMAN, PRIMELINK,
PRIMIX, PRIMEWORD, PRIMENET, PRIMEWAY, PRODUCER, PRIME TIMER,
RINGNET, SIMPLE, Prime INFORMATION/pc, PT25, PT45, PT65, PT200, PT250,
and PST 100 are trademarks of Prime Computer, Inc.

Printing History
Preliminary Edition (DOC9229-1LA) January 1985 for Revision 19.4.0
First Edition (DOC10055-1LA) November 1985 for Revision 19.4.2
Second Edition (DOC10055-2LA) September 1990 for Revision T3.0-23.0

Credits
Editorial: Mary Skousgaard
Production Support: Sonya Zegarra
Technical Support: Julie Cyphers, Rosemary Crowley
Illustration: Carol Smith
Production: Judy Gordon

How to Order Technical Documents
To order copies of documents, or to obtain a catalog and price list

• United States customers call Prime Telemarketing, toll free, at

1-800-343-2533

Monday through Thursday, 8:30 a.m. to 8:00 p.m., and
Friday, 8:30 a.m. to 6:00 p.m. (EST).

• International customers contact your local Prime subsidiary
or distributor.

PRIME SERVICE5"
To obtain service for Prime systems

• United States customers call toll free at

1-800-800-PRIME

• International customers contact your Prime representative.

Surveys and Correspondence
Please comment on this manual using the Reader Response Form provided in the back of
this book. Address any additional comments on this or other Prime documents to

Technical Publications Department
Prime Computer, Inc.
500 Old Connecticut Path
Framingham, MA 01701

///

Reading Path for PRIMOS Documentation

Book Level

PRIMOS
User's
Guide

Introduction
for all Users

1r

CPL
User's
Guide

PRIMOS
Commands
Reference
Guide

Reference
for all Users

1r

Subroutines
Reference
l - V

Language
Reference
Guides Reference foi

Programmers

1
i1

Souroe
Level
DebuggerUser's
Guide

SEG and
LOAD
Reference
Guide

Programmer's
Guide to
BIND and
EPFs

ProgrammerTools

\ t } r } f

Advanced
Programmer's
Guide 1:
BIND and
EPFs

Advanced
Programmer's
Guide III:
Command
Environment

Advanced
Programmer's
Guide II:
File System

Advanced
Programmer's
Guide:
Appendicesand Master
Index

1f

Advanced
ProgrammerInformation

SystemArchitecture
Reference
Guide

Instruction
Sets Guide

Assembly
Language
Programmer's
Guide

LpatkJ)1005S2lA

IV

Contents

About This Book... xi
Specifics of This Volume... xi
References... xiii

1 Introduction to EPFs ...1-1
Dynamic and Registered EPFs ... 1-2

Dynamic EPFs... 1-2
Registered EPFs... 1-2

Program and Library EPFs ... 1-3
Program EPFs... 1-3
Library EPFs... 1-4

Creating and Using EPFs... 1-4
Source Code... 1-5
Compiling ... 1-5
Linking With BIND ... 1-5
Installing EPFs... 1-6
Registering EPFs ... 1-6
Executing EPFs... 1-6

EPFs and Static-mode Applications... 1-7

2 EPF Principles ...2-1
Dynamic Linking ... 2-1

Creating Dynamic Links ... 2-2
Resolving Dynamic Links ... 2-2
Dynamic Linking Errors ... 2-3

EPF Organization ... 2-4
Segment Types ... 2-4
EPF Format... 2-5

EPF Mapping ... 2-6
EPF Sharing... 2-6

3 The Life of an EPF... 3-1
The Life of a Dynamic Program EPF ... 3-1

Compiling or Assembling... 3-2
Building With BIND... 3-2
Program Invocation ... 3-3
Pure Procedure Mapping ... 3-5
Linkage Allocation ... 3-5
Linkage Initialization ... 3-6
Entrypoint Invocation ... 3-6
Resolving Dynamic Links ... 3-6
EPF Termination and Reinvocation ... 3-7
Removing an EPF From Memory... 3-7

The Life of a Dynamic Library EPF... 3-8
Invoking and Mapping ... 3-8
Linkage/Data Allocation and Initialization... 3-9
Calling Routines From a Library EPF... 3-10
Termination and Removal... 3-10

The Life of a Registered EPF... 3-10

4 Program EPFs ...4-1
Coding and Compiling... 4-2

Compiler Options... 4-3
Linking With BIND ... 4-3

Defining the Main Entrypoint... 4-3
Installation ... 4-5

5 Library EPFs. ..5-1
The Library Mechanism ... 5-2

Runtime Libraries... 5-2
Binary Libraries... 5-3
ENTRYS Search List... 5-4

Using the Library Mechanism ... 5-5
Coding and Compiling ... 5-6

Coding Guidelines ... 5-6
Compiling ... 5-7

Determining Library Class ... 5-7
Library Initialization ... 5-8
Library-class Mixing ... 5-8
Language-directed I/O ... 5-9
Static Data Usage... 5-9
Storage Allocation Issues... 5-12

Determining Library Entrypoints ... 5-13
Entryname Conventions ... 5-14

VI

Building a Library EPF With BIND... 5-17
Creating Binary Libraries With EDIT_BINARY ... 5-20
Installing Libraries... 5-20

Installing Binary Libraries ... 5-20
Installing Library EPFs ... 5-21
Setting ENTRYS Search Rules... 5-22
Modifying the System Default ENTRYS Search List... 5-22
Creating and Modifying Private Search Lists... 5-23

6 Registered EPFs ...6-1
Should You Register an EPF? ... 6-1

Shared Linkage... 6-2
Other Factors... 6-2

Creating Registered EPFs... 6-3
Compiler Support... 6-4
Coding Guidelines... 6-5
Compiler Options... 6-6

Building With BIND ... 6-6
Using the -REGISTER Option ... 6-7
Setting the Dynt Type... 6-7
Dynt Types and Binary Libraries... 6-9
Setting Dynt Types in Binary Libraries ... 6-11
Rebuilding Old Binary Libraries... 6-14
Supplying Initialization Routines ... 6-14
Creating Shared Common Areas... 6-15

Testing an EPF... 6-16
Registering EPFs ... 6-17

Dependency Lists... 6-17
Registered EPF States ... 6-18
Multiple EPF Registrations... 6-20
Unregistering EPFs ... 6-21
Setting Paging Disk Space ... 6-21

Using Registered EPFs... 6-22
Getting Information on Registered EPFs ... 6-23
Setting Search Rules for Registered EPFs ... 6-25
Registered EPF Access... 6-26
Invoking Registered Program EPFs ... 6-27

7 Shared Data ...7-1
Using Process-class Library EPFs ... 7-1
Using Shared Read/Write Common Areas... 7-2

Creating Shared Common Areas With BIND... 7-3

VII

Using Static Shared Data... 7-4
Allocating Space... 7-4
Initializing the Data... 7-4
Using the SYMBOL Subcommand... 7-5

Providing for Concurrent Updates ... 7-5
Atomic Update Routines in PMA... 7-6
Other Techniques... 7-8

A Data Sharing Example ... 7-9

8 Maps and Addresses... 8-1
Imaginary and Actual Addresses... 8-1

Signed Segment Numbers... 8-2
LIST.EPF Command... 8-2

The BIND Map... 8-4
From Imaginary to Actual Addresses... 8-6

Determining the Procedure Base Address... 8-6
Determining ECB Addresses... 8-6
Determining the Link Frame Address... 8-7

Examining EPFs in Memory ... 8-7
Examining Mapped EPFs ... 8-7

Using the DUMP_STACK Command... 8-9
Locating the Stack Frame for a Procedure ... 8-10
Multiple Entrypoints With the Same LB ... 8-11
Examining the Stack Frame for a Procedure Invocation... 8-13

9 EDIT_BINARY... 9-1
Creating a Binary Library From a Library EPF... 9-2
EDIT_BrNARY Reference... 9-4

Command Line Options... 9-4
Subcommands... 9-5

Appendices...
A Coding EPFs in PMA ... A-1

Basic Concepts of PMA Programming ... A-1
Use of SEG or SEGR ... A-3
Procedure Text... A-3
Linkage Text... A-3
Stack and Parameter Allocation Information ... A-3
Linkage Information ... A-4
External Linkage Information ... A-5
Designating the Main Entrypoint... A-7

VIII

Restrictions on Writing PMA Modules for EPF Execution ... A-8
PMA Subroutines Must Execute in V-mode or I-mode Environment... A-9
Impure PMA Module Restrictions ... A-9
Pure PMA Modules ... A-ll
Explicit Addressing of Dynamically Placed Externals ... A-ll
Storing Into IPs or ECBs ... A-12

B Obsolete Binary Editors... B-1
LIBEDB ... B-l
EDB ... B-2

Operation ... B-2
Subcommand Summary ... B-2
Obsolete Commands... B-5
EDB Error Messages... B-6

Examples ... B-6
Creating a Library of Subroutines ... B-6
Displaying Entrypoints... B-7
Replacing an Object Module in the Library ... B-8
Sample Use of LIBEDB ... B-9

C EPFs and Static-mode Applications... C-1
Static-mode Applications in a Dynamic Environment... C-l

Restrictions on Static-mode Invocations ... C-l
Static-mode Programs That Share Linkage... C-2

Converting From Static-mode Programs to EPFs ... C-5
Rewriting Build Sequences ... C-6

Converting Programs That Use Register Settings... C-6
How Static-mode Programs Use Registers... C-7
How to Achieve This Functionality in an EPF ... C-7

D A List of Registered Library EPFs... D-1

Index

IX

About This Book

The Advanced Programmer's Guide is a four-volume series that provides
technically sophisticated information for systems-level programmers. This
series supplements basic reference information found in other PRIMOS
manuals.
The books in this series are intended for programmers who are experienced with
the PRIMOS operating system and 50 Series™ systems. In addition, you should
be experienced in at least one high-level programming language supplied by
Prime (preferably PL/I, C, or FORTRAN-77).
The Advanced Programmer's Guide series consists of four volumes:

• Advanced Programmer's Guide I: BIND and EPFs (DOC10055-2LA)
• Advanced Programmer's Guide II: File System (DOC10056-3LA)
• Advanced Programmer's Guide III: Command Environment

(DOC10057-2LA)
• Advanced Programmer's Guide: Appendices and Master Index

(DOC10066-4LA)
The four volumes of the Advanced Programmer's Guide can be ordered as a set
using DCP10171.

Specifics of This Volume
This volume describes Prime's Executable Program Format (EPF), the standard
format for executable programs and subroutine libraries for all languages
supported by Prime®. This manual assumes a working knowledge of the BIND
linker, which is used to build EPFs. The BIND linker is described in the
Programmer's Guide to BIND and EPFs.

• Chapter 1 describes the four types of EPFs: dynamic program EPFs,
dynamic library EPFs, registered program EPFs, and registered library
EPFs. It also outlines the basic steps used to create an EPF.

Second Edition xi

Advanced Programmer's Guide I: BIND and EPFs

Chapters 2 and 3 provide background information about the essential
principles of EPFs: dynamic memory allocation and dynamic linking to
called routines.

Chapters 4,5, and 6 provide detailed instructions for creating and using the
different types of EPFs.

Chapters 7 and 8 provide in-depth information useful for analyzing and
debugging EPFs in memory.

Chapter 9 documents the EDIT_BINARY binary file editor.

Appendix A describes special considerations for writing EPFs in PMA,
Prime's assembly language.

Appendices B and C provide reference information on obsolete but still
supported facilities: the LIBEDB and EDB binary file editors and
static-mode programs.

Appendix D lists the runtime libraries that Prime supplies as registered
library EPFs.

Specifics of the Series
The Advanced Programmer's Guide series divides information among the
volumes of the set as follows:

• Volume I: BIND and EPFs (this volume) describes Executable Program
Formats (EPFs), including registered EPFs, and describes the
EDIT_BINARY binary file editor.

• Volume II: File System describes the PRIMOS file system. It provides
detailed information about the file server, access rights, search rules, and
data and text manipulation in file system objects.

• Volume III: Command Environment describes how to use EPF
initialization routines and how to invoke a user program as a command,
subroutine, or function from a user program or from PRIMOS command
level.

• Appendices and Master Index provides appendix material applicable to all
of the volumes in this document set. It lists the standard error codes used
by PRIMOS, along with their messages and meanings. It describes the
new features of recent PRIMOS revisions that may be of interest to
advanced programmers. Finally, it provides a Master Index to all four
volumes of the Advanced Programmer's Guide series.

This series describes the lowest-level interfaces supported by PRIMOS and its
utilities. It is designed for systems-level programmers who are designing new

xii Second Edition

References

About This Book

products, such as language compilers, data management software, electronic
mail subsystems, utility packages, and so on. Such products are themselves
higher-level interfaces, typically used by other products rather than by end users,
and therefore must use some or all of the low-level interfaces described in this
series for best results. Most of the information in this series deals with interfaces
to PRIMOS that are typically used only in small portions of a product and with
overall product design issues that should be considered before coding begins.
Higher-level interfaces not described in this guide include

• Language-directed I/O
• The applications library (APPLIB)
• The sort packages (VSRTLI and MSORTS)
• Data management packages (such as MPLUSLB and PRISAMLIB)
• Other subroutine packages

The above interfaces are described in other manuals, such as language reference
manuals and the Subroutines Reference series.

The basic document set for the PRIMOS operating system is shown in the
Reading Path for PRIMOS Documentation on page iv of each manual. This
illustration shows the manuals and their intended audience. Lines between
manuals show the order in which these manuals are commonly used to locate
increasingly detailed information about a topic.
Users of this series should be familiar with the PRIMOS User's Guide
(DOC4130-5LA), which contains information on system use, directory structure,
the condition mechanism, CPL files, ACLs, global variables, and how to load
and execute files with external subroutines. New information for Rev. 23.0 can
be found in the PRIMOS User's Release Document (DOC 10316-1 PA) and the
Rev. 23.0 Software Release Document (DOC10001-7PA).
You should use the Advanced Programmer's Guide along with the standard
PRIMOS references: the PRIMOS Commands Reference Guide (DOC3108-7LA
updated by RLN3108-71A) and the five-volume Subroutines Reference series:

• Subroutines Reference I: Using Subroutines (DOC10080-2LA updated by
UPD10080-21A)

•

•
Subroutines Reference II: File System (DOC10081-2LA)
Subroutines Reference III: Operating System (DOC10082-2LA)
Subroutines Reference IV: Libraries and I/O (DOC10083-2LA)

Second Edition xiii

Advanced Programmer's Guide i: BIND and EPFs

• Subroutines Reference V: Event Synchronization (DOC 10213- 1LA updated
byUPD10213-HA)

Users of this series should be familiar with Prime system architecture, as
described in the 50 Series Technical Summary (DOC6904-2LA) and the System
Architecture Reference Guide (DOC9473-2LA).
Users of this volume should also be familiar with the following Prime
publications:

• Programmer's Guide to BIND and EPFs (DOC8691- 1LA) and its updates
UPD8691-11A and UPD8691-12A

• SEG and LOAD Reference Guide (DOC3524-192L)

System Administrators installing registered EPF libraries supplied by Prime
should consult the Rev 23.0 Software Installation Guide (IDR10176-3XA).
For a complete list of available Prime documentation, consult the Guide to Prime
User Documents.

Prime Documentation Conventions

The following conventions are used throughout this document The examples in
the table illustrate the uses of these conventions.

Convention

Uppercase

Italic

E x p l a n a t i o n E x a m p l e
In command formats, words in LISTEPF
uppercase bold indicate the names of
commands, options, statements, and
keywords. Enter them in either
uppercase or lowercase.
Variables in command formats, text, FILE myj>rog
or messages are indicated by lower
case italic.

Abbreviations
in format
statements

Brackets

Braces

If a command or option has an
abbreviation, the abbreviation is
placed immediately below the full
form.

Brackets enclose a list of one or
more optional items. Choose none,
one, or several of these items.
Braces enclose a list of items.
Choose one and only one of these
items.

DEFAULT_DYNT_TYPE
DDT

LD -BRIEF"!
-SIZE J

CLOSE
(filename]-ALL J

xiv Second Edition

About This Book

Convention Explanation

Braces within Braces within brackets enclose a list
brackets of items. Choose either none or only

one of these items; do not choose
more than one.

Monospace Identifies screen output, user input,
prompts, and messages.

User input in In examples, user input is under-
examples scored but system prompts and out

put are not

Hyphen Wherever a hyphen appears as the
first character of an option, it is a
required part of that option.

Ellipsis An ellipsis indicates that you have
the option of entering several items
of the same kind on the command
line.

Subscript A subscript after a number indicates
that the number is not in base 10.
For example, the subscript 8 is used
for octal numbers.

Parentheses In command or statement formats,
you must enter parentheses exactly
as shown.

Example

BIND pathname
options

address Connected

OK, RESUME MY PROG

DYNT -SHARED

pdev-1 [...pdev-n]

2008

DIM array (row, col)

Second Edition xv

Introduction to EPFs

1

An EPF (Executable Program Format) is the standard format for executable
programs and subroutine libraries for all languages supported by Prime.
Compiling (or assembling) your program produces a binary object code file.
You link this binary file using BIND, a dynamic linker. The output file created
by BIND is an EPF. An EPF is an executable code file.
EPFs are dynamic. EPF memory allocation is handled dynamically during
program execution. That is, PRIMOS establishes addressing to whatever
locations in memory are available, rather than requiring pre-specified locations
in memory.
Most programs contain calls to external routines. These external routines are
stored in separately compiled binary libraries (.BIN files). When you use BIND
to build an EPF, it establishes links from your program to these external routines.
For example, if your program calls an external subroutine, BIND establishes a
link between the call statement and the subroutine. These links are dynamic. A
dynamic link contains information that enables PRIMOS to locate the
subroutine when needed; it does not contain the actual address of the subroutine.
PRIMOS also supports separate tools (SEG and LOAD) that create executable
programs that contain static links. Static linking should not be used for new
program development Appendix C of this guide describes how to convert
existing static programs to EPFs. Static linking is not described in this guide;
refer to the SEG and LOAD Reference Guide for further details.
For basic information on programming with EPFs, see the PRIMOS User's
Guide. For information on using the BIND linker, see the Programmer's Guide
to BIND and EPFs.
EPFs simplify the creation, installation, and maintenance of user-written
programs. PRIMOS takes care of loading, sharing and most memory
management so you can concentrate on program functionality. You can create a
variety of EPF types to match the specific requirements of your application.
Figure 1-1 shows the relationships among the four types of EPFs: dynamic
program EPFs, dynamic library EPFs, registered program EPFs, and registered
library EPFs. These EPF types are described in the sections of this chapter that
follow.

Second Edition 1-1

Advanced Programmer's Guide I: BIND and EPFs

Dynamic Program EPF Dynamic Library EPF

Registered Program EPF Registered Library EPF

Figure 1-1. The Four EPF Types

Information presented in Chapters 4,5, and 6 explains the shared characteristics
of the four EPF types and builds on the relationships shown in Figure 1-1.

Dynamic and Registered EPFs
There are two main types of EPFs: dynamic EPFs and registered EPFs. Both
dynamic EPFs and registered EPFs are created using the BIND linker and both
types perform dynamic memory allocation and contain dynamic links.

Dynamic EPFs
A dynamic EPF resolves its dynamic links during program execution. Prior to
execution, a dynamic EPF is stored in the file system. When a user invokes a
dynamic EPF, PRIMOS automatically maps the EPF into special dynamic
segments set aside in that user's private address space. Then, during execution,
PRIMOS resolves the dynamic links to other resources called by the dynamic
EPF.
To create a dynamic EPF, you use the BIND linker. The BIND linker creates
dynamic EPFs by default

Registered EPFs
A registered EPF resolves some of its dynamic links prior to execution, and
resolves other dynamic links during program execution. Registered EPFs are a
shared resource for all users on the system. They are maintained in shared
address space and stored in a special registered EPF database. As of PRIMOS
Revision 23.0 and Translator Family Revision T3.0, most system and language
libraries supplied by Prime are registered EPFs (a complete list of these libraries
is found in Appendix D). As of the Translator Family Rev. T3.0, BIND supports
new options that permit you to create your own registered EPFs.

1-2 Second Edition

Introduction to EPFs

Creating a registered EPF is a two-step process: first you create the EPF using
the BIND linker, specifying that the EPF will be a registered EPF. Then the
System Administrator registers the EPF.

Note This book uses the general term registered EPF for this type of EPF whether or not the
EPF has, in fact, been registered. The term registrable EPF is only used when it is
essential to refer to the file system object version of the EPF.

When an EPF is registered, PRIMOS automatically allocates space for it from
available shared dynamic segments, resolves dynamic links to external routines,
and performs a variety of initialization tasks. PRIMOS resolves the remaining
dynamic links during execution of the EPF.
A registered EPF remains registered (and occupies system resources) either until
the System Administrator unregisters the EPF or until system cold start. A cold
start unregisters all registered EPFs.
Registered EPFs are especially useful for programs and libraries that are widely
used on a system. Because much of the initialization and resolution of dynamic
links is performed at registration time, rather than each time the program is
executed, registered EPFs can be more efficient than dynamic EPFs for many
applications. Because at least part of a registered EPF is mapped to shared
memory, registered EPFs occupy less space in the user's private address space.
Chapter 6 discusses registered EPFs and includes information you can use to
decide whether a given EPF is a good candidate for registration.

Program and Library EPFs

Both dynamic EPFs and registered EPFs can contain any type of executable
code. An EPF can contain an application program, a command, a command
function, or a library of subroutines. You create programs, commands, and
functions with program EPFs. You create subroutine libraries with library
EPFs.

Program EPFs
Program EPFs are programs with a single main entrypoint. You can invoke a
program EPF directly from the command line. You can also invoke a program
EPF indirectly from a running program by calling one of the PRIMOS
subroutines that invokes a program EPF. Chapter 4 gives specific information
about program EPFs.

Second Edition 1-3

Advanced Programmer's Guide I: BIND and EPFs

Library EPFs
Library EPFs are collections of routines. Each library EPF contains one or more
entrypoints. Programs invoke the routines in library EPFs by calling the
entrypoints. PRIMOS links programs to routines in library EPFs dynamically.
Chapter 5 discusses the library mechanism and library EPFs.
BIND establishes dynamic links from an EPF to called routines. The routines
called by the EPF reside in runtime libraries. A runtime library is a collection
of executable routines that can be called by many programs. A runtime library
can be a library EPF, a shared static-mode library, or a PRIMOS direct entry.
Routines in a runtime library never become a part of the runfile of the EPF that
calls them. Instead, each EPF contains dynamic links that enable PRIMOS to
find and execute the routines at runtime. PRIMOS uses your ENTRYS search
list to locate your runtime libraries. Chapter 5, Library EPFs, discusses runtime
libraries in detail.
Routines in a library EPF can call other routines in the same library EPF or
another library EPF. Because the links between an EPF (of any type) and its
called routines are dynamic, you can create program EPFs and library EPFs in
any sequence. (Some restrictions apply to the registration of registered EPFs, as
described in Chapter 2.)

Library routines can be altered, rebuilt, and relocated on the system without
requiring you to relink applications that call them. When updating a library
routine, just make sure that you have not altered the parameter interface between
the routine and its calling programs.

Creating and Using EPFs
The steps required to create and use an EPF are

1. Create the source code in a high-level language or PMA.
2. Compile or assemble the source code using a Prime compiler or the PMA

assembler.
3. Use the BIND linker to create the EPF.

4. Install the EPF in an appropriate location.
5. For registered EPFs, have the System Administrator register the EPF.
6. Execute the EPF.

1-4 Second Edition

Introduction to EPFs

Source Code
A program EPF contains a main routine and may optionally contain internal
subroutines. A library EPF contains only subroutines. Both program EPFs and
library EPFs can contain calls to external routines.
For high-level languages there are no restrictions on coding. You can create all
types of EPFs with any Prime language. However, not all compilers create code
that takes full advantage of registration. See Chapter 6 for information on which
languages fully support registered EPFs. Appendix A gives complete
information on writing EPFs in PMA.

Compiling
Compile or assemble your source code using a Prime compiler or the PMA
assembler. You can create either V-mode (the default) or I-mode object code. If
you are creating a registered EPF, be sure to use a version of the compiler that
supports registered EPFs.

Linking With BIND
You generate all types of EPFs using the BIND linker. Because of the flexibility
of the EPF format, most linking with BIND is straightforward. You use BEND
subcommands to specify whether to generate a dynamic or registered EPF and
whether it is to be a program or library EPF. BIND generates a dynamic
program EPF by default. If you specify that the EPF is to be a registered EPF,
the executable file created by BIND is referred to as a registrable EPF. A
registrable EPF must be registered before it can be executed as a shared program
or library. However, you can test a registrable EPF prior to registering it, as
described in Chapter 6.
BIND links but does not load your EPF. Instead, BIND organizes your runfile in
EPF format so that PRIMOS can load it dynamically at invocation or registration
time. This means that you almost never need to concern yourself with the
location of the EPF code and data in memory. BIND and PRIMOS automatically
take care of allocating memory, loading, and sharing, as well as replacing earlier
versions.
The input to BIND is one or more binary files (.BIN files). These binary files
can be output from a compiler and contain object code for a program or a group
of library routines. BIND also takes as input binary libraries. A binary library
is a binary file created using EDIT_BINARY that contains linkage information
from one or more library EPFs. You can set your BINARYS search rules to
enable BIND to locate binary files and binary libraries by filename, rather than
supplying a complete pathname. The output from BIND is an EPF, an
executable code file (.RUN file). It can be a program EPF or a library EPF.

Second Edition 1-5

Advanced Programmer's Guide I: BIND and EPFs

This guide includes specific information on linking library EPFs in Chapter 5
and registered EPFs in Chapter 6. For a complete reference of all BIND
subcommands, refer to the Programmer's Guide to BIND and EPFs.

Installing EPFs
Dynamic program EPFs are ready to execute as soon as they have been linked
with BIND. PRIMOS automatically takes care of loading when you invoke the
EPF. For dynamic program EPFs, the only installation needed is to copy the
EPF to a useful location in the file system. If you wish, you can also alter users'
COMMANDS search lists so that the program EPF can be run as a command.
For more information on installing dynamic program EPFs, see Chapter 4.
For dynamic library EPFs, install the program in the file system and update
either the system or individual users' ENTRYS search lists. For library EPFs
you may also want to create a matching binary library with dynts (dynamic
links) to the routines in your library EPF.
Registered EPFs are installed by the System Administrator.

Registering EPFs
A registrable EPF must be registered by the System Administrator. Registration
is simple, because PRIMOS automatically takes care of allocating shared
memory to registered EPFs. Once an EPF is registered, it is available to all users
as a command. For information on registering EPFs, see Chapter 6.

Executing EPFs
Execution of an EPF consists of two steps: invocation and execution. When an
EPF is invoked, PRIMOS allocates resources and initializes values. As an EPF
executes, PRIMOS encounters calls to routines, and, if necessary, resolves the
dynamic links to those routines.
Users can use the RESUME command to execute any program EPF to which
they have sufficient access rights. You can use COMMANDS search rules to
make a dynamic program EPF available as a command. All registered program
EPFs are automatically available as commands when using the default
COMMANDS search rules. A program EPF can also be executed using a
PRIMOS subroutine call, for example, EPFSRUN.
Library EPFs are executed indirectly. A program EPF calls specific entrypoints
in the library EPF.

1-6 Second Edition

Introduction to EPFs

EPFs and Static-mode Applications

Virtually all static-mode applications can be converted to EPFs. The EPF
versions give equal or better performance, allow applications to take advantage
of the far more flexible EPF environment, and greatly simplify installation and
maintenance. V-mode and I-mode object files can usually be converted simply
by relinking with the BIND linker. R-mode object files must be recompiled as
V-mode or I-mode. Static-mode programs that share dynamic links to reduce
dynamic linking overhead can be converted to registered EPFs with no loss of
performance. Appendix C compares the BIND and SEG linkers and discusses
converting static-mode programs to EPFs.

Second Edition 1-7

EPF Principles
2

Dynamic Linking

This chapter introduces some of the basic elements of EPF technology:

• Dynamic linking
• EPF organization
• EPF mapping

These elements are used by EPFs of all types. You should find the definitions
and descriptions given in this chapter useful as you read the discussions of
specific applications throughout the rest of this book.

This section describes the logical connections between an EPF and the external
routines that it calls.
Dynamic linking creates flexible connections between EPFs and routines in
runtime libraries. Dynamic linking keeps EPFs and the routines that they call
functionally and physically separate. This greatly simplifies program
maintenance. Both program EPFs and library EPFs can contain dynamic links to
their called external routines. They do not use dynamic links to their own
internal routines.
A dynamic link established by BIND is known as a dynt. A dynt specifies the
name of a called routine, but does not specify its location. To determine the
actual location of a routine, PRIMOS resolves the dynamic link. This is also
referred to as snapping the dynt. PRIMOS snaps these dynts to point to the
actual routines either when the EPF is executed or when it is registered.
There are two types of dynts, per-user dynts and shared dynts. These dynt
types are snapped at different times. Both dynamic EPFs and registered EPFs
can contain per-user dynts. PRIMOS snaps per-user dynts as they are
encountered during program execution. Only registered EPFs can contain
shared dynts. PRIMOS snaps shared dynts at registration time, thus reducing
dynamic linking overhead during program execution.

Second Edition 2-1

Advanced Programmer's Guide I: BIND and EPFs

This dynamic linking mechanism simplifies EPF development and maintenance
and reduces the use of system resources.

Creating Dynamic Links
To execute a called routine, PRIMOS must determine the address of the routine
in a runtime library. When the BIND linker builds an EPF, it establishes
dynamic links to all called routines; it does not install the actual addresses of the
called routines in the EPF. Instead, PRIMOS resolves these dynamic links to the
actual addresses of called routines as needed.
A dynamic link (or dynt) is a two-part object It consists of an Indirect Pointer
(IP) and a character varying string that contains the name of the called routine.
PRIMOS modifies the IP when it resolves the dynamic link; therefore BIND
stores the IP in a modifiable data segment PRIMOS does not modify the name
string; therefore BIND stores this part of the dynt in a nonmodifiable procedure
segment
The first bit of the IP is the fault bit. BIND automatically sets this fault bit to 1
to tell PRIMOS that the IP does not contain the actual address of the routine.
Such an IP is called a faulted IP. The rest of the IP contains the address of the
name string for the routine.

Resolving Dynamic Links
PRIMOS resolves a dynamic link by resetting the faulted IP with the address of
the routine. PRIMOS determines the actual location of the routine by searching
runtime libraries, either during program execution (per-user dynts) or during
registration (shared dynts).
PRIMOS accesses the user's ENTRYS search list to determine which runtime
libraries to search. PRIMOS searches these runtime libraries in the sequence
specified in ENTRYS. Each runtime library contains an entrypoint table, which
lists its available entrypoints. PRIMOS reads the entrypoint table in each
runtime library. When PRIMOS locates an entrypoint name that matches the
dynt's name string, PRIMOS snaps the dynt
Each element in an entrypoint table contains a pointer to an Entry Control
Block (ECB). PRIMOS follows this pointer to the entrypoint's ECB. The ECB
contains a pointer to the entrypoint itself, the first instruction of the routine. (A
shortcalled routine stores the address of the entrypoint itself in the entrypoint
table; it does not use an ECB.)
When PRIMOS locates the entrypoint, it returns to the dynt in the calling
program. PRIMOS replaces the address in the faulted IP with the actual address
of the entrypoint, then resets the fault bit to zero. This process is called
snapping the dynt.

2-2 Second Edition

EPF Principles

PRIMOS then retries the call by reexecuting the PCL instruction, using the
newly modified IP.
Per-user dynts: With dynamic EPFs and the non-shared portions of registered
EPFs, PRIMOS snaps dynts as it encounters them during execution. These are
per-user dynts. The first time PRIMOS encounters a call to a particular routine
during program execution, it checks the indirect pointer. Because the fault bit of
the indirect pointer is set, a pointer fault occurs. PRIMOS then attempts to snap
the dynt and retry the call.
Shared dynts: With registered EPFs, PRIMOS snaps all shared dynts at
registration time. Since these dynts are snapped before execution time, they do
not change during program execution and can be shared along with the pure
procedure code. Because shared dynts are presnapped, the same program may
execute faster as a registered EPF than as a dynamic EPF.
A registered EPF cannot share dynts to routines in a dynamic library EPF. A
registered EPF can only share dynts to registered library EPFs and PRIMOS
direct entries. At registration time, PRIMOS searches only those library EPFs
that have already been registered. At that time PRIMOS snaps the shared dynts
to the routines found in those runtime libraries. PRIMOS snaps the per-user
dynts in the registered EPF when a user executes the EPF.

Dynamic Linking Errors
When PRIMOS attempts to snap a dynt it may not find the named routine.
During program execution, this usually happens because the library containing
the routine is not named in the user's ENTRYS search rules. If PRIMOS cannot
successfully snap a dynt at runtime, it signals a LINKAGE_FAULT$ condition.
Unless intercepted by a program, this condition results in a display like the
following:

Error: condition "LINKAGE_FAULT$" raised at 4243 (3)/1031.
Entry name "INIT_LINE" not found while attempting to
resolve dynamic link from procedure "TRY_ASYNC".
ER!

Here, initline is the name of the routine that could not be found,
4242/1031 is the address of the instruction that referenced a faulted IP for
init_line, and try_async is the name of the procedure making the
reference.

Note PRIMOS is not always able to determine the name of the procedure making the reference
that produces the linkage fault error. For example, procedures compiled in FTN do not
identify themselves to PRIMOS; therefore, PRIMOS produces a shorter message.

Second Edition 2-3

Advanced Programmer's Guide I: BIND and EPFs

For example,

EPF Organization

Error: condition "LINKAGE_FAULT$" raised at
4347(3)/10246.
Entry name "GETLIN" not found.
ER!

When the System Administrator registers an EPF, PRIMOS attempts to snap all
shared dynts. If PRIMOS cannot snap a shared dynt at registration time, it
places the EPF in a suspended state. This EPF is not fully registered. PRIMOS
does not permit the execution of a registered EPF until all shared dynts have
been successfully snapped. If the routine referenced by a shared dynt is in a
library EPF that has not yet been registered, PRIMOS cannot snap the shared
dynt. When the System Administrator registers this library EPF, PRIMOS
automatically snaps the shared dynt in the suspended EPF and changes the state
of the suspended EPF to ready. This process is discussed in detail in Chapter 6,
Registered EPFs.

This section describes the physical organization of the different components of
an EPF.

Segment Types
BIND organizes EPFs into segments. Which segment holds a given part of an
EPF depends mainly on whether the code in that part is modified at runtime.
The precise organization varies according to the compiler used, the linking
procedure, and the type of EPF. For dynamic EPFs, BIND gathers pure
procedure code into one or more shareable pure procedure segments and puts
linkage and static data into one or more per-user linkage/data segments. For
registered EPFs, BIND puts shareable linkage and pure procedure code together
in shared linakge/data segments and per-user linkage and static data in
non-shared linkage/data segments. For both types, BIND places any impure
procedure code in non-shared impure procedure segments.
When PRIMOS maps an EPF to memory, it allocates space in an appropriate
memory area for each segment. Because BIND organizes an EPF into
segments, but PRIMOS does not allocate memory space to these segments until
later, all EPF segments are known as dynamic segments. The EPF Mapping
section below explains the process of mapping EPF segments to memory.

2-4 Second Edition

EPF Principles

EPF Format
The EPF runfile created by BIND is not simply a memory image. EPFs are
stored in a generalized format that allows PRIMOS to map them efficiently into
any available dynamic segments. This format includes compressed descriptions
of linkage/data segments and imaginary addresses.
Linkage/Data Description: BIND stores EPF linkage/data segments as
compressed descriptions rather than memory images. BIND classifies
linkage/data into a variety of types such as ECBs, IPs, repeated data, and the
like. The linkage/data description consists of entries naming specific types along
with blocks of actual data for each entry. When PRIMOS maps an EPF, it
expands these descriptions to create the contents of each linkage/data segment
To expand a description, PRIMOS fills in templates for each linkage/data type
using the blocks of data contained in the description.

• A dynamic EPF runfile contains a memory image of the pure procedure
code portion of the EPF and a compressed description of the per-user
linkage and data. PRIMOS creates a copy of the per-user portion by
expanding this compressed description.

• A registrable EPF runfile contains descriptions of shareable code, linkage,
and data. PRIMOS generates the contents of both the shared and per-user
segments from these descriptions.

Imaginary Addressing: BIND does not use actual absolute memory
addresses when creating an EPF runfile. Instead, it assigns each segment an
imaginary segment number and creates imaginary addresses consisting of the
imaginary segment number and an offset. For example, in a dynamic EPF, the
first procedure segment is imaginary segment number +0. The imaginary
address of the 1000th address in the first procedure segment is therefore
+0/1000. (Note that all addresses are in octal.)
BIND must use imaginary addresses because PRIMOS can map an EPF to any
available locations in a user's virtual address space. For example, an IP in
per-user linkage that points to a location in the procedure code must use the
imaginary address of that location. When PRIMOS maps the EPF and creates a
copy of the per-user linkage for a user, it translates the imaginary address to an
actual address in the user's address space. If, for example, PRIMOS maps
segment +0 in the above example to a user's segment 4771, then an IP that
points to the imaginary address +0/1040 is set to point to the actual address
4771/1040.

Note Not all imaginary segments are loaded so that they begin at offset 0 of an actual segment
Therefore, PRIMOS may also adjust the imaginary address offset when it creates the
actual address. For example, linkage/data segments can be loaded anywhere in a
read/write segment; they could begin at some non-zero offset in an actual segment.

Second Edition 2-5

Advanced Programmer's Guide I: BIND and EPFs

EPF Mapping

Chapter 8 shows you how you can use imaginary and actual address information
to examine an EPF in memory.

The different parts of dynamic and registered EPFs are mapped to different
locations in memory. PRIMOS maintains Descriptor Table Address Registers
(or DTARs) for EPF memory addressing as follows:

• DTAR1 — shared memory segments
• DTAR2 — per-user memory segments (user assigned)
• DTAR3 — per-user memory segments (system assigned)

Refer to the System Architecture Guide for further details.
Both the pure and per-user parts of dynamic EPFs are mapped to unused
segments in DTAR2 during program execution. The number of DTAR2
segments available for dynamic allocation can be set by the System
Administrator. PRIMOS maps dynamic EPFs only to these dynamic segments,
assuring that data in static segments is never corrupted by EPF memory usage.
Both the pure and per-user parts of registered EPFs are mapped to DTAR1
segments at registration time. At the same time, PRIMOS reserves virtual
DTAR3 segment numbers to hold the per-user part of the EPF. PRIMOS
maintains a list of DTAR3 segments reserved for each registered EPF. These
DTAR3 segments are used when a user invokes the registered EPF. When a user
invokes the EPF, PRIMOS copies the image of the per-user part in DTAR1
directly to these reserved DTAR3 segments. All references to addresses in the
per-user part are adjusted to point to locations in the reserved DTAR3 segments.
Therefore, unlike a dynamic EPF, the per-user part of a registered EPF is
mapped to the same virtual location in every user's virtual address space.

EPF Sharing
PRIMOS shares registered EPFs automatically at registration time by placing
shareable code and linkage in DTAR1 segments that are part of every user's
address space. (The -public search rule must be set to support EPF sharing, as
described in Chapter 6.)
PRIMOS shares dynamic EPFs using Virtual Memory File Access. Virtual
Memory File Access (VMFA) provides two important benefits:

• Pure code can be paged directly from the file system copy.
• All users can share the same copy of the pure code.

2-6 Second Edition

EPF Principles

For pure code, VMFA pages the physical memory copy of the EPF file image
directly from the file system copy of the dynamic EPF. Because the EPF file
image does not change, PRIMOS does not need to write it out to the paging disk.
The physical memory copy is simply overwritten. PRIMOS can always page in
a new copy directly from the file system.
PRIMOS uses the address translation mechanism to map the same physical
memory copy of the pure code to each user's virtual address space. Once a
dynamic EPF is mapped into one user's address space, the same physical
memory copy is mapped to available segments in any subsequent user's virtual
address space. Since the EPF file image contains the pure portion of the
dynamic EPF, the same copy of the pure code is shared by all users who invoke
this dynamic EPF.
Only the impure portion of a dynamic EPF is not shared in this way. After
PRIMOS maps the EPF, it allocates space for per-user data and linkage from the
dynamic segments in each user's address space. PRIMOS then initializes these
areas by expanding the compressed description contained in the EPF file image.
It changes imaginary addresses to actual addresses in the user's virtual address
space. For example, IPs in the linkage/data segment that point to imaginary
addresses are changed to point to the actual addresses in the user's virtual
address space.

Second Edition 2-7

The Life of an EPF

3

All EPFs pass through a number of phases. Depending on the EPF type, these
phases may occur at different times and in different order. Some phases only
occur with certain EPF types. This chapter outlines the steps that EPFs go
through as they are created and run, and tracks the life of some typical EPFs
through all phases.

The Life of a Dynamic Program EPF

A dynamic program EPF typically goes through the following phases:

1. You write and compile or assemble the program.
2. You use BIND to build an EPF.
3. You invoke the EPF.

o PRIMOS maps the pure procedure portion of the EPF to memory,
o PRIMOS allocates the impure linkage/data portion of the EPF.
o PRIMOS initializes the impure linkage/data portion of the EPF.

4. PRIMOS calls the main entrypoint of the EPF, beginning execution.
5. PRIMOS resolves dynamic links encountered in the EPF during execution.
6. The EPF terminates, returning to its caller.
7. You or PRIMOS remove the EPF from memory.

The first time you invoke a dynamic program EPF during a terminal session, it
must pass through all phases except the last one. On subsequent invocations,
PRIMOS may be able to skip some or all of the mapping, allocation and
initialization phases.

Second Edition 3-1

Advanced Programmer's Guide I: BIND and EPFs

Compiling or Assembling
When you compile (or assemble in the case of PMA) your source code, you
create an object code file, also referred to as a .BIN file. This .BIN file contains
procedure text and linkage/data text The procedure text consists of the program
instructions and constant data. The linkage/data text consists of

• Static data that can be initialized when the program is invoked
• Entry Control Blocks (ECBs) for the main entrypoint and internal

subroutines
• External linkage information such as IPs and dynts to external routines

The compiler can determine some of this linkage/data text. It establishes initial
values for static data and most of the contents of the ECBs. However, the actual
locations of the procedure and linkage frames remain unknown, and all external
references remain unresolved.
The linkage part of the text includes information about unknowns that are
resolved by linking the program with BIND. For example, compiling a call to an
external routine, SUBR_A, generates linkage text that indicates the need for an
indirect pointer (IP) to SUBR_A at a certain location in the linkage frame.
When you link this program, BIND creates the IP.

Building With BIND
The BIND linker resolves the unknown addresses and external references in your
object file. As you load object files, BIND builds up the procedure and
linkage/data segments of your EPF. BIND places the procedure code in
procedure segments and linkage and static data in the linkage/data segments. As
each element is placed, BIND determines its imaginary address.
Once BIND has determined the imaginary address of an element, BIND is able
to resolve references to the element For example, once BIND has determined
the imaginary addresses of a procedure's linkage and procedure frames, those
addresses can be placed in the procedure's ECB.
External References: BIND maintains and updates a list of external
references as you build your program. For example, if you load a module called
MY_PROG that calls an external subroutine called SUBR_A, BIND adds
SUBR_A to the list of unresolved references in MY_PROG's linkage.
BIND handles two types of external references:

• References to routines loaded during the BIND session
• References to routines in runtime libraries

3-2 Second Edition

The Life of an EPF

If the referenced routine is in a module that you load as part of the BIND session,
BIND handles the external reference by generating an imaginary address. That
is, BIND creates an IP that points to the actual location of the subroutine's ECB
in the linkage text. For example, if you load SUB_A.BIN (using the LOAD
subcommand), BIND places the procedure and linkage of SUB_A in procedure
and linkage segments. Included in SUB_A's linkage is SUB_A's ECB. BIND
can now place the imaginary address of SUB_A's ECB in an indirect pointer (IP)
in MY_PROG's linkage. This resolves MY_PROG's external reference to
SUB_A.
If the referenced subroutine is in a runtime library, BIND handles the external
reference by creating a dynt. During the BIND session, you can either explicitly
load the appropriate binary library or you can issue the DYNT subcommand.
The DYNT subcommand searches your binary libraries to resolve external
references. For example, suppose MY_PROG calls an external subroutine,
called SUB_B, that resides in a library EPF. You begin the BIND session by
loading MY_PROG; BIND adds SUB_B to the list of unresolved references in
MY_PROG's linkage. If you then give the subcommand DYNT SUB_B, BIND
does two things:

• BIND places the character string "SUB_B" in MY_PROG's procedure
text. (Since the string is a constant, it can go in a pure segment.)

• BIND creates a dynamic link in MY_PROG's linkage text. It sets the fault
bit of the dynamic link to 1 (making it a faulted IP) and places the
imaginary address of the character string "SUB_B" in this faulted IP.

This resolves the reference to SUB_B. BIND can accomplish the same result if
you load the dynt with a binary library.
At the end of a successful BIND session, all previously unresolved references in
your program have been resolved to either imaginary addresses or dynts.
Main Entrypoint: In addition to resolving references, BIND determines the
entrypoints of your EPF. A program EPF has only one entrypoint. By default,
BIND uses the first procedure loaded as the main entrypoint You can specify a
different entrypoint with the MAIN subcommand.

Program Invocation
You can invoke a program EPF in one of three ways:

• Directly from a command line: as a program (using the RESUME
command), as a command, or as a function

• From a program that calls the EPFSRUN subroutine
• From a program that calls the CPS subroutine

Second Edition 3-3

Advanced Programmer's Guide I: BIND and EPFs

When you invoke a program EPF (using any of these methods), PRIMOS
automatically performs several operations that prepare it for execution. These
operations are normally invisible to the user. They include

• Pure procedure mapping
• Linkage/data allocation
• Linkage/data initialization

PRIMOS performs these operations by calling a series of subroutines. The
specific subroutines responsible for each step are noted in the descriptions that
follow. Normally you need not call these subroutines; PRIMOS automatically
calls them you when you invoke a program EPF from the command line or with
the EPFSRUN or CPS subroutines. However, you can call these subroutines if
you wish to perform any of the EPF mapping, initialization, and invocation steps
individually. These EPF-related subroutines are documented in detail in
Subroutines Reference II: File System and in Advanced Programmer's Guide III:
Command Environment.
If the EPF has been invoked previously, some of these steps may already be
complete. When you invoke an EPF, PRIMOS checks to see if a step may be
omitted. In the case of a dynamic program EPF, the EPF may still be mapped as
a result of a previous invocation. If this is the case, PRIMOS skips the mapping
step.
Procedure Invocation: You should note the difference between program
invocation as described above, and procedure invocation.
The basic functional unit of EPF organization is the procedure. A procedure
includes executable code, linkage, and data. Every procedure has an entrypoint,
defined in its linkage by an Entry Control Block (ECB), that allows the
procedure to be called in an orderly way. A given EPF may consist of one or
more procedures.

Note Procedures are functional units. The actual organization of an EPF in memory is by
segments. Different parts of a procedure are placed in different segments, and given
segment may contain code from many procedures. See Chapter 2 for a discussion of EPF
organization.

Whether a procedure is contained in a program EPF or a library, PRIMOS
invokes it in essentially the same way. Normally, procedures are invoked by
executing a PCL instruction that addresses the first location in the procedure's
ECB (or a faulted IP, which is resolved to point to the ECB). The PCL
instruction allocates a stack frame for the called procedure, passes any arguments
and causes execution to jump to the first executable instruction of the procedure.
This sequence of events is called procedure invocation. (Procedures can also
be called by various jump instructions without using an ECB or allocating a
stack frame. These are called short calls and quick calls.)

3-4 Second Edition

The Life of an EPF

Procedure invocation occurs in two circumstances:

• A running procedure calls a procedure that has been linked to it.
• A program EPF is invoked either from the command line or from another

program.

When you invoke a program EPF, the EPFS subroutines take care of mapping
and initializing the EPF, process the command line, and finally invoke the EPF's
starting procedure. In other words, the last step of program invocation is a
procedure invocation.
The term invocation is also frequently used to mean the running of a procedure
from the point when it is invoked to the point when it terminates and returns to
the invoking procedure. In this sense, a given program invocation consists of
one or more (usually many more) procedure invocations. A process typically
consists of many program and procedure invocations.
Typically, a program EPF calls several subroutines, which in turn call other
subroutines, and so on. All the subroutines called, both directly and indirectly,
by a given program invocation are considered to be part of that invocation.

Pure Procedure Mapping

To map a dynamic EPF, PRIMOS allocates sufficient dynamic segments to hold
all of the pure procedure segments. PRIMOS maps the imaginary segment
number of each procedure segment (+0, +2, +4, and so on) to one of the
allocated dynamic segments.
PRIMOS does not actually read the procedure text in from the file system at this
point Instead, PRIMOS pages the procedure text in from the file system during
program execution. As the program executes, PRIMOS uses the virtual memory
mechanism (VMFA) to page data from the file containing the EPF directly into
the allocated procedure segments. PRIMOS automatically pages in the
procedure text during execution on an as-needed basis. Because the virtual
memory mechanism does not allow segments mapped in this way to be
modified, PRIMOS sets access to these segments so that they cannot be written
by the user or the program. Virtual memory mapping is described in detail in
Chapter 8.
The subroutine EPFSMAP carries out EPF mapping.

Linkage Allocation
PRIMOS also allocates sufficient dynamic space to hold all of the linkage/data
and any impure procedure segments required by the EPF. PRIMOS sets the
access to these segments so that they can be written to by the user or by the
program. The subroutine EPFSALLC carries out linkage allocation.

Second Edition 3-5

Advanced Programmer's Guide I: BIND and EPFs

Linkage Initialization
Once space for the linkage segments has been allocated, PRIMOS reads in the
linkage description from the EPF file and expands it to create the contents of the
linkage segments. PRIMOS converts imaginary addresses into actual addresses
in virtual memory. PRIMOS sets the IPs for each internal subroutine to contain
the virtual address of that subroutine. PRIMOS sets the faulted IPs for each
external routine to contain the virtual address of the character string that hold the
dynt name.
PRIMOS also copies any impure procedure code into impure segments during
this phase.
The subroutine EPFSINIT carries out linkage/data initialization.

Entrypoint Invocation
At this point, the EPF is ready to execute. PRIMOS executes a PCL instruction
to the ECB of the main entrypoint, and the EPF code begins to execute.
The subroutine EPFSINVK invokes the main entrypoint of a program EPF.

Resolving Dynamic Links
PRIMOS resolves dynamic links (snaps dynts) as it encounters calls to external
routines during program code execution. The first time PRIMOS executes a call
to a particular external routine, it resolves the dynamic link. Subsequent calls in
that program to the same external routine often use the same resolved dynamic
link.
PRIMOS recognizes an unresolved dynamic link when it encounters a faulted IP.
The faulted IP generates a fault condition. This brings the dynt snapping
mechanism into play, as described in Chapter 2.
When the dynt is snapped, PRIMOS replaces the faulted IP with an IP containing
the actual address of the routine in virtual memory. PRIMOS then reissues the
call to the external routine.
Subsequent calls to the routine through the same IP are executed without
producing a fault condition. Calls to the same routine from other parts of the
program may be made through different faulted IPs. In this case, these dynts still
need to be snapped.
In practice, few programs ever resolve all of their dynamic links. PRIMOS only
resolves the dynamic links of those external routines that are actually called.
Your program may contain references to external routines that are not called
during every execution of the program. Dynamic links to those routines remain
unsnapped during invocations when the routines are not referenced.

3-6 Second Edition

The Life of an EPF

EPF Termination and Reinvocation

Normally, a program EPF terminates by returning to the routine that invoked it
(the EPFSINVK subroutine).

Note An EPF may also terminate and return to command level by calling the EXIT routine.
This is not usually recommended since this defeats some features of the flexible EPF
command environment.

When an EPF terminates, PRIMOS marks the linkage area used by that
invocation for reinitialization. PRIMOS does not deallocate the linkage area. If
the EPF is subsequently reinvoked from the same command level, the linkage
area does not need to be reallocated, just reinitialized. When the linkage area is
reinitialized, only program data and IPs are actually reset, saving startup time.
PRIMOS resets all faulted IPs in order to be sure that any program-class libraries
called are properly reinitialized when the program is run again. See the
discussion of library initialization in Chapter 5.
PRIMOS deallocates an EPF linkage area only when the command level that
invoked it is released or the EPF is removed from memory. When the same EPF
is invoked at more than one command level, PRIMOS allocates a separate
linkage area for each command level. Only the linkage area for the current
command level is deallocated unless the other command levels are released. By
keeping linkage areas independent, PRIMOS assures that suspended program
invocations are not affected by the current invocation.
When a program EPF terminates, PRIMOS also deallocates dynamically
allocated memory acquired during execution.

Note If your program EPF is called as a command function, it normally allocates space for the
returned string using the ALSSRA or ALCSRA subroutines. It is the responsibility of the
calling program to deallocate this space using the FRESRA subroutine. If you call an
EPF as a command function from another program, you should have the calling program
deallocate the returned string space. Refer to the Advanced Programmer's Guide III:
Command Environment for further details.

Removing an EPF From Memory
PRIMOS tries to keep dynamic program EPFs mapped to memory after they
terminate. PRIMOS places information about a terminated EPF in a data
structure called the EPF cache. While the EPF is in the cache, it remains
mapped to memory. If the EPF is reinvoked while in the cache, it need not be
remapped. This helps reduce startup time.
EPFs that have terminated but remain mapped are listed as (not active) by
the LIST_EPF command.

Second Edition 3-7

Advanced Programmer's Guide I: BIND and EPFs

When the number of EPFs mapped to memory becomes too large, PRIMOS
removes the oldest inactive EPF from the cache and unmaps it. If the EPF's
linkage/data segments are still allocated, PRIMOS deallocates them at the same
time.
You can explicitly remove inactive EPFs with the REMOVE_EPF command.
The subroutine EPFSDEL also handles EPF removal.

The Life of a Dynamic Library EPF

A dynamic library EPF must pass through the same stages as a program EPF,
although the order and details differ in some cases. This section explains the
important differences.

• A library EPF is invoked only when PRIMOS snaps a dynt to it.
• PRIMOS maps the pure portion of a dynamic library EPF when it

encounters the EPF name in an ENTRYS search list. Once a library has
been mapped by a user process, it remains mapped unless the user's
command environment is reinitialized or the library is explicitly removed.
During subsequent dynt snapping, PRIMOS can skip the mapping phase
for EPFs already mapped.

• PRIMOS allocates and initializes the impure portion of a library EPF when
it snaps a dynt to it. PRIMOS decides whether it needs to carry out these
phases depending on the class of the library and whether the calling
program or process has previously snapped another dynt to the same
library.

Invoking and Mapping
A dynamic library EPF is invoked when a running program calls one of its
entrypoints.
PRIMOS must map a dynamic library EPF to search its entrypoints. The first
time a program EPF calls a routine in a library EPF, PRIMOS maps the library
EPF. PRIMOS then searches the entrypoints of that library EPF, attempting to
locate the called routine. If PRIMOS finds the called routine, it snaps the
dynamic link, then reissues the call to that routine. Therefore, unlike a program
EPF, a dynamic library EPF is always mapped by the time it is actually invoked
by a call from a running program.
PRIMOS finds the correct library EPF by examining the libraries listed in the
user's ENTRYS search list. PRIMOS searches the listed libraries until it finds
one that contains the correct entrypoint. In order to search each library's
entrypoints, PRIMOS needs to map each library (unless the library is already

3-8 Second Edition

The Life of an EPF

mapped). Typically, dynamic linking results in the mapping of many library
EPFs as PRIMOS searches for routines. Dynamic links may not have been
snapped to most of these libraries, but as long as they remain mapped, they need
not be remapped during subsequent dynamic linking.

Linkage/Data Allocation and Initialization
Each time the dynamic linking mechanism snaps a dynt to a library EPF,
PRIMOS determines whether it needs to allocate and initialize the library's
linkage/data segments. This decision depends on whether the EPF is a program-
class or process-class library and whether it is already in use by the same
program or process. (Whether a library EPF is a program-class or process-class
library is established by the LIBMODE subcommand of BIND. Refer to the
Programmer's Guide to BIND and EPFs for details.)
Program-class Libraries: PRIMOS maintains a different copy of the
linkage/data segments of a program-class library for each active program
invocation that calls that library. When a program that calls the library
terminates, the library linkage/data segments used by that invocation are marked
for reinitialization. These segments can be reinitialized and used by a
subsequent program invocation that calls the library.
PRIMOS initializes the linkage/data portion of a program-class library the first
time the library is called by a given program invocation. When snapping a link
to a program-class library, PRIMOS checks to see whether the current program
invocation has already snapped another link to the same library. If it has, then
the linkage/data segments have already been allocated and initialized, and
PRIMOS need not repeat these steps.
Process-class Libraries: PRIMOS maintains only one copy of the
linkage/data area of a process-class library for each process that calls the
library. PRIMOS allocates and initializes this linkage/data area the first time a
routine in the EPF library is called by a given user process. When snapping a
link to a routine in a process-class library, PRIMOS checks to see whether the
library has already had its linkage/data allocated and initialized by the same
process. If it has, PRIMOS can skip these steps.
The linkage/data portion of a process-class library is deallocated only when one
of the following happens:

• The user logs out.

The user explicitly removes the library with the REMOVE_EPF command.•

• The user's command environment is reinitialized, either by the
INITIALIZE_COMMAND_ENVIRONMENT (ICE) command or by an
error condition.

Second Edition 3-9

Advanced Programmer's Guide I: BIND and EPFs

Calling Routines From a Library EPF
A running program calls a routine in a library EPF. As that library EPF routine
executes, it may itself call routines in other library EPFs. The library EPF calls
the routine, encounters a faulted IP, and resolves the dynamic link. The
mechanism is the same as the one used by program EPFs to resolve dynamic
links.
As these dynts are snapped, PRIMOS needs to decide whether to initialize the
called libraries. When making this decision, PRIMOS considers the calling
library to be part of the program invocation that called it, either directly or
indirectly. If a called program-class library has already been referenced by the
same program invocation, PRIMOS does not reinitialize its linkage/data.

Termination and Removal
When the program invocation that calls a library terminates, PRIMOS decides
how to dispose of the library. If the library is not linked to another active
program, the library is considered inactive. PRIMOS disposes of the library's
linkage/data area according to the library type:

• When a program-class library terminates, the linkage/data area for the
terminated program invocation is marked for reinitialization. The area
remains allocated and available for use by another program invocation.

• When a process-class library terminates, PRIMOS leaves the linkage/data
area allocated for the process untouched. Other program invocations that
call the library from the same process use the same linkage/data area
without reinitializing it.

Both program-class and process-class libraries remain mapped after the program
invocations that called them have terminated. You can remove inactive libraries
of both types from your address space with the REMOVE_EPF command.

The Life of a Registered EPF

A registered program EPF goes through a somewhat different set of phases. You
write, compile (or assemble), and use BIND to build the EPF, much as you
would with a dynamic EPF. Then

1. The System Administrator registers the EPF. At this point PRIMOS carries
out several steps:

A. It maps the shared portion to shared memory.
B. It creates an initialized copy of the per-user portion in shared memory.

3-10 Second Edition

The Life of an EPF

C. It snaps dynts in the shared portion.
D. It registers the EPF in a table of registered EPFs.

2. You invoke the EPF from the command line or it is invoked from a running
program. PRIMOS then performs the following steps:

A. It maps the initialized copy of the per-user portion to PRIMOS
per-user segments.

B. It invokes the main entrypoint beginning execution.
C. It snaps per-user dynts as they are encountered during execution.

3. The EPF terminates, returning to its caller.
4. The shared portions of a registered EPF remain mapped to memory until

the EPF is unregistered by the System Admimstrator.

For more information on registered EPFs, see Chapter 6.

Second Edition 3-11

Program EPFs

A program EPF is an executable object designed to be called from the command
line or explicitly from another program. It contains a single main entrypoint that
is invoked when the program is called.
A program EPF can be a dynamic EPF or a registered EPF. Program EPFs are
distinguished from library EPFs, as shown in Figure 4-1. A program EPF has a
single entrypoint; a library EPF may have multiple entrypoints. You can invoke
a program EPF directly from the command line or indirectly via a call to a
Prime-supplied subroutine. You never directly invoke a library EPF; you
execute routines within a library EPF by calling them from a program EPF.
Library EPFs are further described in Chapter 5; special considerations for
registered EPFs are described in Chapter 6.

Dynamic Program EPF
• Single entrypoint
• Direct invocation

Dynamic Library EPF
• Multiple entrypoints
• Indirect invocation

Registered Program EPF
• Single entrypoint
• Direct invocation

Registered Library EPF
• Multiple entrypoints
• Indirect invocation

Figure 4-1. Comparison of Entryname and Invocation Properties of Program
EPFs and Library EPFs

A program EPF can be invoked in three ways:

• As a program

• As a command

• As a command function

Second Edition 4-1

Advanced Programmer's Guide I: BIND and EPFs

You invoke a program EPF as a program by typing the command line

RESUME prograrn_name

You invoke a program EPF as a command by typing the program name. You
invoke a program EPF as a command function by typing the program name in
square brackets as

[program_name]

The function returns a string value.
You may also call a program EPF in any of these forms from a running program.
A running program calls a program EPF by using either the CP$ subroutine or
the EPFS subroutines. The CPS subroutine calls a program EPF by passing a
command line to the command processor. You can call both dynamic program
EPFs and registered program EPFs using the CPS subroutine. The EPFS
subroutines directly invoke a program EPF, giving you greater control over EPF
mapping and execution. These subroutines are documented in the Subroutines
Reference II: File System and their use is further detailed in the Advanced
Programmer's Guide III: Command Environment. You can call dynamic
program EPFs (and registrable program EPFs) using the EPFS subroutines; you
cannot call a registered program EPF using these subroutines.
Whether a dynamic EPF can be invoked as a program, command, or command
function depends on how the calling sequence is coded and how the EPF is
installed.

Coding and Compiling
When you code a program EPF, you specify the calling sequence of its main
entrypoint. Prime recognizes five standard calling sequences. Which calling
sequence you select determines how the program EPF can be invoked. If you
write a program EPF that will be invoked as a program, you normally need not
concern yourself with the calling sequence. If you write a program EPF that will
be invoked as a command, you should code for command line argument passing
and a severity code return value. If you write a program EPF that will be
invoked as a command function, you should code for the string value return
mechanism. These calling sequences are described in detail in the Advanced
Programmer's Guide III: Command Environment.
Aside from calling sequence specification, there are no important restrictions on
program EPF coding. In order to take full advantage of the EPF mechanism,
program EPFs should be pure code. See Appendix A for information on how to
code program EPFs in PMA.

4-2 Second Edition

Program EPFs

Compiler Options
EPFs must be compiled in V-mode or I-mode. Do not use R-mode. You can use
IX-mode if your compiler supports this extension to I-mode. IX-mode
considerations are further described in Chapter 5.
It is recommended that you do not use the -PBECB compiler option. This
option provides greater locality of reference by placing ECBs in the procedure
text. Since PRIMOS must modify ECBs during program execution, PRIMOS
must store these ECBs and their associated procedure text in impure code
segments that cannot be shared. This typically reduces the performance of an
EPF. However, in some very large programs, the benefits of improved locality
of reference may exceed the performance costs of these impure code segments.

Note PRIMOS automatically places some ECBs in shared procedure segments when you use
BIND to build a registered EPF. The PBECB compiler option cannot be used to enhance
this aspect of registered EPFs.

Linking With BIND
When you link a program using BIND, it creates a dynamic program EPF as the
default type. BIND creates a dynamic program EPF unless you specifically
request another type. Linking dynamic program EPFs is usually very
straightforward. For a complete guide, see the Programmer's Guide to BIND
and EPFs.

Note Additional information you need if you want to create registered EPFs is given in Chapter
6. Even if you intend to create a registered EPF, you should still understand the material
in this chapter. Most of the material in this chapter is applicable to both kinds of program
EPFs. Furthermore, the recommended procedure for building registered EPFs is to build
and test them first as dynamic EPFs.

Defining the Main Entrypoint
The main entrypoint of an EPF is determined by BIND. The BIND linker has a
MAIN subcommand for this purpose. When you use BIND to build the
program, the main entrypoint is one of the following:

• The procedure specified by the MAIN subcommand
• If you do not issue a MAIN subcommand, the first procedure linked during

the BIND session

Second Edition 4-3

Advanced Programmer's Guide I: BIND and EPFs

Generally, the first procedure in the source code becomes the first procedure in
the object file and, therefore, the first procedure linked by BIND. If you do not
specify the MAIN subcommand, this first procedure becomes the main
entrypoint by default Usually, when you build a program you allow BEND to
choose the first procedure as the main entrypoint. However, you can always
override this selection by issuing the MAIN subcommand.
Note that the main entrypoint is not necessarily determined by the syntax of the
main procedure declaration in the language you use. Each language has its own
conventions for defining a main procedure:

• In F77 the main procedure customarily begins with the PROGRAM
progname statement.
In PL/I the main procedure begins mihprogname PROC
OPTIONS(MAIN).
In C the main procedure is called main().

Note Appendix A shows you how to write the main entrypoint of a PMA program that is to be
executed as an EPF.

However, none of these statements guarantees that the declared procedure is
considered the main procedure by BIND. This depends on the order in which
procedures are actually linked or on the MAIN subcommand of BIND. For
example, you can write a C program that declares two procedures:

main ()
{

}

subroutine_a ()
{

}

Normally, main is the main entrypoint. However, if you give the command

MAIN suJbrouti/ie_a

during the BIND session, BEND marks subroutine_a as the main entrypoint.
This is not recommended. In fact, if you fail to use the correct syntax for the
main entrypoint, your program may not execute properly. But the possibility of

4-4 Second Edition

Installation

Program EPFs

building a program this way does emphasize the fact that BIND rather than the
compiler ultimately determines the main entrypoint.
The MAIN subcommand is useful if you build your programs from many
separate modules. You can link modules in any order and then explicitly declare
the main entrypoint with the MAIN subcommand.

To install a dynamic program EPF, you place the .RUN file in an appropriate
directory, set the access rights to the EPF, and (if required) set the system or
individual user's COMMANDS search rules.
To invoke a program EPF as a program, you must place the EPF in a directory to
which all of the program's potential users have the necessary access rights. To
execute an EPF on a local disk, a user must have Read or Execute rights to the
EPF and Use rights to its directory. To execute an EPF on a remote disk, a user
must have Read rights to the EPF and Use rights to its directory. Access rights
are documented in the PRIMOS Users Guide.
If the EPF is to be called as a command or command function, you must also
include the name of the EPF's directory in each potential user's COMMANDS
search rules. There are two ways to do this:

•

•

Place the EPF in a directory listed in the system's COMMANDS search
list.
Place the name of the EPF's directory in the COMMANDS search list of
every user who will invoke the program EPF as a command or command
function.

Note that a user's search lists are automatically reset to the system's search lists
every time the process is reinitialized (for example, by logging in or issuing the
ICE command). The SET_SEARCH_RULES and LIST_SEARCH_RULES
commands are described in the PRIMOS Commands Reference Guide; the search
rules facility is described in the Advanced Programmer's Guide II: File System.

Second Edition 4-5

Library EPFs

A library is a collection of one or more (usually many) executable routines.
When a program EPF calls an external routine, PRIMOS locates the executable
code for that routine in a library. A library can, in turn, call routines in other
libraries. This chapter describes how to create and maintain library EPFs. It also
describes libraries that are not EPFs.
A library EPF can be a dynamic EPF or a registered EPF. Library EPFs are
distinguished from program EPFs as shown in Figure 5-1. A program EPF has a
single entrypoint; a library EPF may have multiple entrypoints. You invoke a
program EPF directly; you invoke a library EPF indirectly by issuing calls to its
routines. You can call routines in a library EPF from a program EPF or from
another library EPF. Program EPFs are further described in Chapter 4; special
considerations for registered EPFs are described in Chapter 6. Library EPFs are
divided into two classes: program-class and process-class; library classes are
described in this chapter.

Dynamic Program EPF
• Single entrypoint
• Direct invocation

Dynamic Library EPF
• Multiple entrypoints
• Indirect invocation
• Program-class or

process-class

Registered Program EPF
• Single entrypoint
• Direct invocation

Registered Library EPF
• Multiple entrypoints
• Indirect invocation
• Program-class or

process-class

Figure 5-1. Comparison of Properties between Program EPFs
and Library EPFs

Second Edition 5-1

Advanced Programmer's Guide I: BIND and EPFs

The Library Mechanism

A library EPF is a collection of routines, each routine having its own entrypoint.
In general, libraries contain many routines related to a given function, compiler,
application, or product. This means that even though a program may call many
routines, BEND can usually resolve these calls by linking to a small number of
libraries. Therefore, storing similar routines in a library EPF saves a great deal
of linking effort, when compared with linking to individually-stored routines.
The library mechanism functions in two stages:

• At link time
• At run time

At link time, you create the dynts that the dynamic linking mechanism uses at
run time. In most cases, you do this with BIND by linking to binary libraries
that contain code to create the dynts. You can also create dynts using the DYNT
subcommand of BEND.
At run time, the dynamic linking mechanism resolves these dynts to link your
program EPF to routines contained in runtime libraries of various types. One
type of runtime library is library EPFs. (Registered EPFs resolve some dynts at
registration time, before the program is actually run.)
The library mechanism thus uses two types of libraries:

• Runtime libraries
• Binary libraries

Runtime Libraries
A runtime library contains executable versions of routines. A runtime library
can be a library EPF, a shared static-mode library, or a PRIMOS direct entry. A
program EPF can call routines in a runtime library; a routine in a library EPF can
call other routines in other runtime libraries.
A call to a routine in a runtime library is performed by establishing (at BEND
time) and resolved (at runtime) dynamic links in the calling program. The code
in runtime libraries never becomes a part of the calling program. Instead, BIND
incorporates a dynamic link to each called routine in the calling program. The
next section, Binary Libraries, shows how BIND does this.
EPFs can link dynamically to three types of runtime libraries:

• Shared static-mode libraries
• PRIMOS direct entries
• Library EPFs

5-2 Second Edition

Library EPFs

Each type of library consists of a collection of routines and a list of entrypoints.
Each type is organized and stored differently, but PRIMOS links to them
dynamically in essentially the same manner. It searches the entrypoint list for the
name of the called routine. If it finds the name, it uses a pointer supplied in the
entrypoint list to resolve the dynamic link to the actual runtime code of the
routine. Chapter 2 explains the dynamic linking process in detail.
Shared Static-mode Libraries: Shared static-mode libraries contain
static-mode routines that are loaded into shared segments. All EPFs that call
routines in shared static-mode libraries execute the same shared copy. As of
Rev. 23.0, registered library EPFs have replaced most shared static-mode
libraries supplied by Prime (refer to Appendix D for details). The remaining
shared static-mode libraries are mainly used by shared static-mode products.
PRIMOS Direct Entries: A PRIMOS direct entry is a routine that is actually
a part of the PRIMOS operating system. Because these routines are part of the
single shared copy of PRIMOS, each EPF that calls them uses the same shared
copy.
You can determine if a called routine is a PRIMOS direct entry when you use
BIND to build the calling program. Use the MAP subcommand of BEND to
observe when references are resolved. PRIMOS direct entries are those
references that BIND resolves when you issue the LIBRARY (LI) subcommand
with no specified library name.
Library EPFs: Library EPFs are EPF runfiles that contain a collection of
routines. You can create your own library EPFs using the BIND linker. Prime
also supplies many library EPFs that contain routines called by various Prime
products.

Binary Libraries
A binary library is a collection of object code modules kept together in one
.BIN (binary) file. You link these modules into your runfile using BIND and
they become part of the runfile. Note the distinction between runtime libraries
and binary libraries: the code in a runtime library is accessed by dynamic links
from your program; the code in a binary library is actually copied into your
program.
Binary libraries may contain the compiled code of subroutines. In this case,
BEND copies the binary code of the called subroutines into your program's
runfile. The called subroutines become part of your program.
However, most binary libraries do not contain the actual code of subroutines.
Instead, many binary libraries contain the object code for dynamic links to
routines in runtime libraries. BEND copies the dynamic links for called routines
into your program's runfile. These dynamic links become part of your program.

Second Edition 5-3

Advanced Programmer's Guide I: BIND and EPFs

Most Prime-supplied binary libraries contain code for creating dynts to routines
in runtime libraries. When you link to these binary libraries, PRIMOS does not
put any actual routine code in your runfile. Instead, it puts in the dynts that it
needs to link to these routines at runtime.
You can use the LIBRARY subcommand of BIND to link such binary libraries.
This is one way to establish dynamic links in your runfile. You can also use the
DYNT subcommand of BIND to create individual dynamic links. Binary
libraries simplify program linking by making it unnecessary to create each dynt
individually. The Programmer's Guide to BIND and EPFs describes these BIND
subcommands in greater detail.
The dynts in Prime-supplied binary libraries do not necessarily point to routines
contained in any one runtime library. Instead, they point to routines in a variety
of runtime libraries, including both PRIMOS entrypoint libraries (direct entries)
and library EPFs. A specific runtime routine may be referred to by dynts in
several binary libraries. These binary libraries provide a flexible interface at link
time between your program and the runtime libraries. Because a single binary
library can contain dynts to routines in several runtime libraries, you can usually
resolve all external references in your program by linking to one or two binary
libraries.
Creating Binary Libraries of Dynts: After you create a library EPF with
BIND, you can use EDIT_BINARY to create a binary library that contains dynts
to the routines in that library EPF. You can then use BIND to copy this binary
library into programs, creating dynamic links to your library EPFs, just as you
would with Prime-supplied libraries.
You link to Prime-supplied binary libraries by using the LIBRARY subcommand
of BIND. Prime-supplied binary libraries reside in the top-level directory LIB.
The command LIBRARY library name is functionally equivalent to the
command LOAD LlB>library_name.
You link to your own binary libraries by using the LOAD subcommand of
BIND, or by using the LIBRARY subcommand and supplying a complete
pathname. You can request that your System Administrator place your own
binary libraries in the LIB directory.
Normally, binary libraries contain code that instructs BEND to link in only the
modules that it needs to satisfy unresolved references. When you link to a
binary library, BIND searches the library for dynts or routines that satisfy
unresolved references and copies them into the runfile.

ENTRY$ Search List
When the dynamic linking mechanism attempts to resolve a dynamic link, it uses
your ENTRYS search list to look for the required routine. An ENTRYS search
list contains a set of search rules that give the order in which libraries should be
searched to find a routine. Each rule is an instruction to search one library or
type of library.

5-4 Second Edition

Library EPFs

The ENTRYS search rules may include the following:

-PRIMOS_DIRECT_ENTRIES Tells PRIMOS to search for the routines
among PRIMOS direct entrypoints.
This is always the first rule.

-STATIC_SHARED_LIBRARIES Tells PRIMOS to search shared static-
mode libraries.

EPF_pathnome Tells PRIMOS to search for entrypoints
in the named library EPF.

- P U B L I C Te l l s P R I M O S t o s e a r c h r e g i s t e r e d
library EPFs.

PRIMOS searches the libraries in your ENTRYS search list in the order in which
they are listed until it finds a library that contains the requested entrypoint
PRIMOS provides a set of system default ENTRYS search rules. These system
default search rules normally contain entries for all Prime-supplied runtime
libraries and any other libraries that the System Administrator has chosen to
install on the system.
An individual user may modify or replace the default search rules by creating a
private ENTRYS search list. If the applications you run make especially heavy
use of certain runtime libraries, you may want to edit your search rules to put the
names of those libraries close to the top. This can make dynamic linking more
efficient. You may also wish to add your own user-written library EPFs to your
ENTRYS search list.
However, if you link a program with routines in a user-written library EPF, you
must be sure that every user that runs that program is using an ENTRYS search
list that contains a search rule for that library. When a running program attempts
to call a routine in a runtime library not included in your ENTRYS search list,
the program fails, generating a LINKAGE_FAULT$ error.
Note that a user's search lists are automatically reset to the system's search lists
every time the process is reinitialized (for example, by logging in or issuing the
ICE command). The SET_SEARCH_RULES and LIST_SEARCH_RULES
commands are described in the PRIMOS Commands Reference Guide; the search
rules facility is described in the Advanced Programmer's Guide II: File System.

Using the Library Mechanism
EPFs give you complete access to the library mechanism. You can easily create
your own library EPFs with BIND. You can also use EDIT_BENARY to create
your own binary libraries containing dynts to the routines in your library EPFs.
The remaining sections of this chapter show you all the steps you need to follow
to create a library EPF and make it available for use.

Second Edition 5-5

Advanced Programmer's Guide I: BIND and EPFs

1. Coding and compiling
2. Determining library class
3. Determining library entrypoints
4. Building a library with BIND
5. Creating a binary library
6. Installing the libraries

Chapter 6 shows you how to create a registered library EPF.

Coding and Compiling
You can write a library in any high-level language or PMA.

Coding Guidelines
The library source code is a collection of subroutines containing no main
program. In PL/I you write a series of procedures with no program procedure. In
FORTRAN 77 you create a set of subroutines or functions. In C you write a set
of functions with no main function.
Routine Names: Usually you use the name you give a routine in the source
code as the library entryname by which the routine is called from other
programs. For example, suppose you define a FORTRAN 77 routine called
SUMSQ using the statement

SUBROUTINE(S,N) SUMSQ

The process of building a library that contains SUMSQ is simpler if you use the
same name in the library's entrypoint list. Some routine names are reserved for
use by PRIMOS. The section, Determining Library Entrypoints, discusses
library entryname conventions. You can simplify the process of building your
library with BIND if you choose routine names according to these conventions.
Other Coding Guidelines: Routines can use any calling sequence. Declare
parameters and return values according to the conventions of the language you
are using. Library EPF routines differ from the main entrypoint of a program
EPF in this respect. Main entrypoint calling sequences must follow specified
formats, described in the Advanced Programmer's Guide III: Command
Environment. Library EPF routine calling sequences impose no such
requirements.

5-6 Second Edition

Library EPFs

The nature of your routine code may affect the class requirements of your
library. The next section explains library classes and gives coding guidelines.
Language Considerations: When choosing a programming language and
designing calling sequences for routines in a library EPF, consider the
requirements of the programs that will call those routines. It is generally easier
to call a routine written in the same language as the calling program, since
calling conventions and data types are the same. If a routine is to be called from
several languages, try to choose compatible data types. For example, a PL/I
routine that requires a CHAR (n) VARYING parameter is more difficult to call
from C than a routine that requires a CHAR (n) parameter, because C contains
no equivalent to the CHAR (n) VARYING data type.

Note If you plan to register your library EPF, make sure that the language and compiler version
you are using support registration. See Chapter 6.

You should also remember that C language subroutines handle parameters by
value, while FORTRAN 77 and PL/I handle them by reference. Subroutines
written in FORTRAN 77 and PL/I can treat parameters as both input and output
values in the same way that Prime-supplied routines do. C language subroutines
must receive pointers to output parameters. If you write library subroutines in C,
you should make programmers who use them aware of this difference.
If you are coding in PMA, see Appendix A, which gives general guidelines for
writing EPF code in PMA.

Compiling
If your subroutines are written in a high-level language, compile your source
using one of the Prime compilers. The compiler must generate V-mode or
I-mode object code. If your subroutines are written in PMA, assemble the
source with the PMA assembler. PMA code must contain the SEG or SEGR
pseudo-operations, as described in Appendix A.
As with program EPFs, do not use the -PBECB compiler option. For more
information, refer to Chapter 4.

Determining Library Class
When you build your library EPF using BIND, use the LIBMODE subcommand
to specify whether it is to be a program-class library or a process-class library.
You must specify a library class for all library EPFs, both dynamic library EPFs
and registered library EPFs. This section shows you how to determine which
class to use when building a library EPF.

Second Edition 5-7

Advanced Programmer's Guide I: BIND and EPFs

Library Initialization
A library's class determines when and how often the library is initialized.
Initialization of an EPF sets the initial values for various elements in the
linkage/data segments. When PRIMOS initializes a linkage/data segment it
resets dynts to their unsnapped state and writes initial values to locations that
contain static data. If an EPF contains impure procedure code, PRIMOS also
copies the initial code values to the segments allocated for impure code.
Initialization may occur several times during the life of an EPF, depending on the
type of the EPF. For dynamic EPFs, PRIMOS initializes the following:

• A program EPF each time it is invoked

• A program-class library EPF the first time it is called by a given program
invocation

• A process-class library EPF the first time it is called by a given process

For registered EPFs, PRIMOS initializes the following:

• The shared linkage/data of the EPF at registration time.

• The per-user linkage/data of a registered EPF in the same way it
initializes a dynamic EPF. The per-user linkage/data of a registered
program EPF or a program-class registered library EPF is initialized once
per program invocation. The per-user linkage/data of a process-class
registered library EPF is initialized once per process.

The discussion that follows applies both to dynamic EPFs and to the per-user
parts of registered EPFs.
When you create a library EPF you can choose to make it either a program-class
or process-class library. In general, process-class libraries are preferable because
they minimize initialization overhead. However, in certain circumstances you
must create a program-class library. This depends on two issues:

• Whether the routines in the library EPF call routines in program-class
libraries

• How the routines in the library EPF initialize and handle static data

Library-class Mixing
The following rules reflect the way PRIMOS initializes called libraries during
program execution.

• A program-class library routine can call routines in another program-class
library.

5-8 Second Edition

Library EPFs

A process-class library routine can call routines in another process-class
library.
A program-class library routine can call routines in a process-class library.
A process-class library routine cannot call routines in a program-class
library.

PRIMOS decides whether to initialize a called library when it snaps a link to the
library. If the library is a program-class library, PRIMOS initializes it if it has
not been previously called during the current program invocation. If the library
is a process-class library, PRIMOS initializes it if it has not been previously
called by the same process.
Because PRIMOS only makes this decision when it snaps a dynt, it cannot
initialize a called library more often than it snaps dynts to the called library.
Since dynts in the calling EPF remain snapped until the calling EPF is
reinitialized, PRIMOS cannot be sure of initializing a called library any more
often than it initializes the calling EPF. Therefore, process-class libraries, which
are initialized once per process, should not call program-class libraries, which
must be initialized once per program invocation. If PRIMOS detects a violation
of this rule during dynamic linking, it generates a LINKAGE_FAULT$ error.
Therefore, any library routine that calls routines in program-class libraries must
itself reside in a program-class library.

Language-directed I/O
Prime-supplied languages use program-class libraries to handle language I/O.
Therefore, routines that use language-directed I/O must be in program-class
libraries. Some language-directed I/O statements are shown in Table 5-1.

Table 5-1. Language-directed I/O Statements

Language Statements
C printf, getc, fopen

FORTRAN 77 READ, WRITE, OPEN, CLOSE
PL/I put, get, open, close

Static Data Usage

A routine that use static data may also have to be placed in a program-class
library. This depends on how the static data is used and how you intend the
routine to function. This section gives some guidelines that you can use to

Second Edition 5-9

Advanced Programmer's Guide I: BIND and EPFs

determine whether static data usage requires that the routine be placed in a
program-class library.
In general, compilers create non-static variables by default. Non-static variables
are allocated and initialized at runtime in such a way that their lifespan is strictly
limited to specific portions of the invocation, such as single subroutine
invocation.
Static variables are allocated and initialized only as often as PRIMOS initializes
the EPF. Therefore, the lifespan of static data in an EPF library depends on the
library class. Static data values in a program-class library are maintained for a
single program invocation. Static data values in a process-class library survive
as long as the invoking process.
Static storage places data in fixed locations in the linkage/data area of an EPF.
The precise scope and lifespan of static variables varies from compiler to
compiler, but you typically use static storage to maintain the values of variables
across calls to a procedure. Static data include

• Variables declared as static or static external in PL/I and C
• Variables declared with a SAVE, DATA, or COMMON statement in

FORTRAN 77. (If the program is compiled with the -SAVE option, all
variables are static.)

• PMA variables created using the COMM and EXT pseudo-operations or
the LINK pseudo-operation followed by instructions such as DATA, OCT,
DEC, BSS, BSZ, ECB, IP, and the like.

It is generally considered good programming practice to limit the use of static
data in order to keep the behavior of your procedures consistent from invocation
to invocation. If variable values are not maintained across calls, then you can be
sure that values left over from one invocation cannot affect a procedure's
behavior on subsequent invocations. This makes your procedures more robust
and portable and allows you to program in a strictly modular way.

Note Even when you want to maintain variable values across calls, you can often avoid using
static storage by passing the values back to the calling program and having the calling
program maintain them.

Process-class Libraries: In order to minimize initialization overhead,
process-class libraries are generally preferable. However, when using
process-class libraries, you must be sure that static data values generated during
one program invocation do not adversely affect the library's behavior during
subsequent program invocations.
You can use process-class libraries explicitly to maintain static data values from
program invocation to program invocation. Chapter 7 shows you how to make
use of this feature to share data among programs within a single user process.
Remember, however, that such use of static data may make your subroutines less

5-10 Second Edition

Library EPFs

easily portable among applications. You may be able to use other mechanisms,
such as global variables, to maintain data values from program invocation to
program invocation without sacrificing portability.
Program-class Libraries: Program-class libraries generate more
initialization overhead, but insure that subroutine behavior does not vary from
one program invocation to the next They are useful when you choose to
maintain static data values across calls during a single program invocation, but
do not want these values to affect subsequent program invocations.
The following PL/I example illustrates the importance of correctly choosing the
library class when library subroutines use static data. The sample routine uses
static storage to maintain data across calls. It keeps a running average of a
stream of numbers:

average: proc(number) returns(fixed bin(15));

del number fixed bin(15); /* The newest number */

del count fixed bin(15) static init(O),/* # of numbers */
total fixed bin(31) static init(O); /* Total value */

c o u n t = c o u n t + l ; / * A n o t h e r n u m b e r * /
t o t a l = t o t a l + n u m b e r ; / * T o t a l i t u p * /

return(divide(total ,count, 15));
/* Return quotient of average */

e n d ; / * a v e r a g e : p r o c * /

If this routine is placed in a process-class library, it can only keep the running
average of a single stream of numbers for each process. For example, suppose
that the program STATS calls this subroutine to calculate the average of a stream
of 15 numbers, resulting in a value of 27. If you subsequently reinvoke STATS
during the same terminal session, count is still equal to 15 and total equal to 27.
Any new number stream is treated as a continuation of the previous one. The
only way to avoid this behavior is to reinitialize your command environment
between invocations of STATS.
If the same subroutine is placed in a program-class library, then subsequent
invocations of STATS cause the values of count and total to be reinitialized.
Each invocation of STATS can then use the AVERAGE subroutine to calculate
the average of a different stream of numbers.
Note, however, that the utility of the routine is still quite limited by its use of
static data. It can still only calculate the average of a single stream of numbers
within a given program invocation since total and count maintain their values
across calls throughout the program invocation.

Second Edition 5-11

Advanced Programmer's Guide I: BIND and EPFs

You can make the routine much more flexible by rewriting it to eliminate the
static data and pass the running values back to the calling program:

average: proc(number,count,total) returns(fixed bin(15));

del number fixed bin(15), /* The newest number. */
c o u n t fi x e d b i n (1 5) , / * # o f n u m b e r s . * /
t o t a l fi x e d b i n (3 1) ; / * T o t a l v a l u e . * /

c o u n t = c o u n t + l ; / * A n o t h e r n u m b e r . * /
t o t a l = t o t a l + n u m b e r ; / * T o t a l i t u p . * /

return(divide(total,count, 15));
/* Return quotient of average.*/

e n d ; / * a v e r a g e : p r o c * /

In this case, the calling program is responsible for maintaining the running value
and the number count. There are other ways to handle this problem without
eliminating static storage and requiring the calling program to maintain variable
values across calls, but they can require careful management of the static data
area.

Storage Allocation Issues
Program-class and process-class library EPFs differ in how they allocate and
deallocate stack space.
50 Series architecture allows the dynamic allocation of stack space during a
procedure call. In addition, PRIMOS allows the dynamic allocation and
deallocation of memory via explicit requests by a running program.

Dynamic memory is allocated during program runtime as a result of either

• Compiler-generated requests for temporary storage, such as for the storing
of a temporary character string during the execution of a string
concatenation operation

• Program-directed requests for memory, such as via the ALLOCATE
statement in PL/I

Normally, memory dynamically allocated by a program is automatically
deallocated (freed) by PRIMOS when the program terminates. In addition, any
memory dynamically allocated by program-class library EPFs invoked by that
program is also deallocated.
However, memory dynamically allocated by a process-class library EPF is not
deallocated by PRIMOS when a program terminates. This is because the linkage
portion of that EPF, which may contain pointers to the dynamically allocated

5-12 Second Edition

Library EPFs

memory, is not deallocated. Therefore, PRIMOS must distinguish between a
program-class library EPF and a process-class library EPF when allocating
memory.
A program-class library EPF acquires dynamically allocated memory from the
program-class storage pool used by program EPFs. PRIMOS automatically
deallocates this memory when a program terminates.
A process-class library EPF acquires dynamically allocated memory from a
special memory pool, called process-class storage. To allocate memory from
this pool, you must issue the LIBRARY PROCESS_CLASS subcommand when
you use BIND to build the library. No memory from this pool is ever explicitly
deallocated by PRIMOS except during logout and command environment
initialization.
If you build a process-class library EPF without the LIBRARY
PROCESS_CLASS subcommand, then any language-driven allocation, either
explicitly via statements such as ALLOCATE in PL/I, or implicitly via
compiler-generated allocation for temporary storage, fails when the library EPF
executes. The failure is in the form of a LINKAGE_ERROR$ condition raised.
The condition is raised because the process-class library EPF attempted to link to
a program-class library EPF in which the program-class allocator resides.

Caution A pointer to storage that has been dynamically allocated as program-based storage should
not be passed to a process-class routine if that routine stores the pointer in linkage area or
in dynamically allocated memory. Similarly, the address of a program-class entrypoint
should not be passed to a process-class routine unless the routine stops using the address
when it returns to its caller.

In general, a pointer to object A should never be passed to routine B if the life-span of the
storage used by routine B to hold the pointer to object A may exceed the life-span of
object A itself. Otherwise, the termination of object A followed by the continued
execution of routine B may result in the reference by B to the (nonexistent) object A,
producing unpredictable (and invariably incorrect) results.

While this is a general programming principle, it applies specifically to the interactions
between program-class routines and process-class routines.

Determining Library Entrypoints
Each library EPF contains a list of its entrypoints. This entrypoint list names the
routines in the library that may be called from outside the library. You use BIND
to create the entrypoint list when you build your library.

By default, BIND puts the names of all routines in the library into the library's
entrypoint list You can use the ENTRYNAME subcommand to exclude some
routines from the library's entrypoint list. However, a program cannot directly
call a subroutine unless the subroutine is included in the library's entrypoint list.

Second Edition 5-13

Advanced Programmer's Guide I: BIND and EPFs

Unlisted routines can be called by other routines in the same library. Another
routine in the same library can provide a calling program with the address of an
unlisted routine. In this way, some routines in a library can be made externally
available while others are reserved for internal use by other routines in the same
library.

Entryname Conventions
Prime reserves the following entrynames for Prime-supplied subroutines:

• All entrynames containing a $ sign (for example: GVSGET, CLSPIX,
ECLSCC, SLEEPS)

• All entrynames listed in Table 5-2

Do not use any of these entrynames unless you specifically plan to replace a
Prime supplied subroutine with one of your own.

Note The IX-mode C compiler automatically adds the GS prefix to all external references
unless they are declared as having fortran storage class (a Prime extension to the C
language). For example, a call to the printf routine creates a reference to GSPRINTF.
This forces IX-mode programs to call the IX-mode versions of subroutines. If you create
your own IX-mode C library, you must prefix the entrynames with G$. For example, if
you call a routine in your library using the C statement

y=my_sum(x) ;

the library entryname for the called routine must be G$MY_SUM.

5-14 Second Edition

Library EPFs

Table 5-2. Subroutine Entrynames Reserved by Prime

ACKRCT ENCRYP LIBTBL QPOST TUB

ADD_QREC EPF_ERR LIST_SRL QUITHD TUN

ADOCRD EPF_RL LNGCMP QUOTE_ TlOB

ADQREC ERASE LOCK ROBASE TlOU

ADRESS ERROPN LOG.EVEN R3FALT TBLRED

AD.CMD ERRRTN LOG_RECO RDASC TIDEC

ALLOC ERRSET MCSDAT RDBIN TIHEX

APPEND EVAL_A MCSTOD RDNPAG TIMDAT

APROTO EXIT MOVB RDPRCN TIMREC

ATLIST EXTRAC MOVE RECYCL TIMSLT

ATMADSf FELERR MOVEB RELGRP TIOCT

ATTDEV FILHER MOVWDS REMANS TM3270

AVAIL FINDPG MSGCTL REMUSR TMDISP

BCKUPB FEND_U NETCHK REPOST TNOU

BSCMAN FIND.UID NETFIG RESTART. TNOUA

C1IN FNDREC NETPRC RGSTRY TODEC

CALFC_ FINDWRD NETSET RJDBG TOHEX

cn FORCEW NEWS RJMNIT TONL

CIRLOG FREE_DES NOTDST RJPROC TOOCT

CKINST FREE_0_R NPXPRC RMLOCK TRNRCV

CKNDNM FSCHOC NXTLIN RPTSPL TRTYPE

CLEARS GALLKS OAUSER RQUEST TRVERSIO

CLREAD GCHAR OERRTN RSTBL TSATRC

CLRLIN GETADR OPNDFL SAL_HP TSTAMP

CLR_FLDS GETENT OPNDOC SCANB UDTDRY

CLSIX)C GETERR OPNQFL SCHAR UDTF07

CMD_POST GETNPG OWL2 SEARCH_C UNCAN_ME

CMD_PRE_ GETNYB PUB SEARCH_H UNLOCK

Second Edition 5-15

Advanced Programmer's Guide I: BIND and EPFs

Table 5-2. Subroutine Entrynames Reserved by Prime (continued)

CNIN GETREG PUN SECBLD UNPACK_A

COMANL GETSLT PlOB SEGCON UPCASE

CONTRL GET_REPL PlOU SELANG UPDATE_S

CRAWL_ GFILKS P2UPCS SETATT USERID

CREUFD GINFO PACK.BIT SETNAM USRPRM

DATE_A GORDNC PACK_CHA SETREG VMMSG

DCTEXS GOREAD PACKJNT SET_SRL VMMSG2

DECR.HOP GTDOCR PARS.ATT SET_VERS VMMSG3

DEFILE GTWORD PARTCL SFR_CFSC VREMID

DELAY GUSLKS PASSWD SFR_HP WHATIT

DELAY. HASHU PCREAT SHRLIB WRASC

DELETE HASH_UID PEXIT SH_CMD WRBIN

DELETE_Q ICMTB_ PFIL2A SLAVE WRITLINE

DELOAS ICPL_ PFLM9E SLAVER WRTPG

DH3270 ICS2CT PHDBG SOUR3 XLACPT

DIDNUM ID PINIT SPLCHK XLASGN

DIRSER INCPTR PINLNK SRWREC XLCLR

DISPLA INITP1 PK2LDV STK_EX XLCLRA

DMIDAS INIT.NPX PRIBLD STPNC XLCONN

DMLCP INIT_0_S PRICON STRBL XLGOON

DNUMID INTCM_ PRVSB_ STRTPH XLGWC

DOSSUB IQNET PTRAP STUFF XLUASN

DPTINI IQUSER PUTBL SUBMIT XMTRCV

DPTOFF DPTOFF ISFEPF PUTSLT SWFBK_

DRAIN_QU JUSTRT PUT_HOP SWFIM_

EM3270 LCKGRP QPARSE SWINTQ

5-16 Second Edition

Library EPFs

Usually you use the names by which routines were defined in the source code as
entrynames in the library's entrypoint list. If you want to use different names,
you can have BIND change the names of routines, but this requires an extra step
in the build process. To keep matters simple, choose the names carefully at
coding time and stick with them.

Building a Library EPF With BIND
Once you have decided on the entrypoint list and class of your library, you can
build it with BIND. The following examples show you typical build sequences
for program-class and process-class dynamic library EPFs. Even if you are
planning to register your library, you should first build and test it as a dynamic
EPF. Once the library is functioning successfully as a dynamic EPF it is simple
to rebuild it as a registered EPF. Registered EPFs are described in Chapter 6.
For a program-class library EPF, the build sequence is

OK, BIND library-EPF-filename
[BIND Rev. T3.0-23.0 (c) 1990, Prime Computer, Inc.]
: LIBMODE -PROGRAM
Library is program class.
: LOAD module-1 Load the compiled code of your library.
: LOAD module-2

ENTRYNAME name-1 [name-2 . ..] Create entrypoint list.
LIBRARY library—name Load any special l ibraries

required.

LIBRARY Load the standard system library if needed,
FILE

OK,

The important points to note are

• You may provide a filename for the library EPF either on the BIND
command line or with the FILE subcommand at the end of the build
sequence. If you fail to supply a filename, BIND gives the library EPF the
same name as the first module loaded.

• The LIBMODE -PROGRAM subcommand defines the EPF as a
program-class library.

Second Edition 5-17

Advanced Programmer's Guide I: BIND and EPFs

• The compiled code of your subroutines can be in one file or in several
separately compiled modules. You may find it easier to maintain the
library if you code and compile the routines separately. When you load
several modules, you can either specify several LOAD subcommands, as in
the example, or name all the modules on the same subcommand line.

• You can name all the entrypoints on the same ENTRYNAME subcommand
line, as in the example, or give a separate ENTRYNAME subcommand for
each entrypoint.

• You may find it useful for debugging purposes to issue the MAP
subcommand before you file the EPF. If you want the locations of
common areas to appear on the map, issue the
RESOLVE_DEFERRED_COMMON subcommand before the MAP
subcommand.

For a process-class library EPF, the build sequence is

OK, BIND library-EPF-filename
[BIND Rev. T3.0-23.0 (c) 1990, Prime Computer, Inc.]
: LIBMODE -PROCESS
Library is process class.
: LOAD module-1
: LOAD module-2

ENTRYNAME name-1 [name-2 ...]
LIBRARY library-name

: LIBRARY PROCESS CLASS Load the process class special
l i b r a r y .

: LIBRARY
: FILE
OK,

The differences between the process-class and program-class build sequences are

• The LIBMODE -PROCESS command declares the EPF to be a
process-class library.

• The subcommand LIBRARY PROCESS_CLASS loads a special binary
library used by process-class library EPFs. This library contains routines
that cause all dynamic allocation performed by your library routines to be
done in process-class memory rather than program-class memory. For
more information, see the section Storage Allocation Issues below.

5-18 Second Edition

Library EPFs

Automatically Generating Entrynames: You can have BIND
automatically generate a list of entrynames by issuing the ENTRYNAME -ALL
subcommand. Before loading the modules containing your subroutines, issue
ENTRYNAME -ALL. After loading the modules containing the subroutines
you want listed in the entrypoint list, issue ENTRYNAME -NONE. This tells
BIND not to add entrynames for any subroutines subsequently loaded.
The sequence of subcommands is

ENTRYNAME -ALL
LOAD module-1 These modules contain routines
LOAD module-2 that you want l isted as entrypoints.

ENTRYNAME -NONE
LOAD other-module-1 These modules contain routines
LOAD other-moduie-2 that you don't want listed as

e n t r y p o i n t s .

: L IBRARY [spec ia l - l i b ra ry -1 . . .] I f needed

Always issue the ENTRYNAME -NONE subcommand before loading any
libraries with the LIBRARY subcommand. Otherwise, you are likely to produce
a library EPF that either will not execute correctly or that has entrypoint names
that conflict with Prime-supplied libraries. The ENTRYNAME subcommand is
further described in the Programmer's Guide to BIND and EPFs.
Changing Entrynames: An entryname is normally the same as the name of
the subroutine in your compiled code. If you want a subroutine's entryname to
be different from the name under which the subroutine was declared in the
source code, use the CHANGE_SYMBOL_NAME subcommand.
To change the name of an entryname, issue the CHANGE_SYMBOL_NAME
subcommand, then issue the ENTRYNAME subcommand. For example,
suppose you define a subroutine called FOO, using the FORTRAN 77 statement

SUBROUTINE FOO(X)

If you want to declare this subroutine as an entrypoint called BAR in your library
EPF, give the following subcommands to BIND:

: CHANGE_SYMBOL_NAME FOO BAR
: ENTRYNAME BAR

Second Edition 5-19

Advanced Programmer's Guide I: BIND and EPFs

If you have BIND generate the entryname list with the ENTRYNAME -ALL
subcommand, give the CHANGE_SYMBOL_NAME subcommand after you
load the subroutine modules.

The CHANGE_SYMBOL_NAME subcommand is further described in the
Programmer's Guide to BIND and EPFs.

Creating Binary Libraries With EDIT_BINARY
You can greatly increase the convenience of using your library EPF by creating a
binary library with dynts to the library EPF entrypoints. After successfully
building your library EPF using BIND, use EDIT_BINARY to generate a
corresponding binary library. You use this binary library when you build other
EPFs that call routines in the library EPF.
Without such a binary library, when you build an EPF that calls routines in your
library EPF, you need to specify individual dynts for each called routine (using
the DYNT subcommand of BIND). With such a binary library, you can build an
EPF that calls routines in your library EPF exactly as you build EPFs that call
Prime-supplied subroutines. Simply load your binary library during the BIND
session, just as you load Prime-supplied binary libraries.
EDIT_BINARY is further described in Chapter 9.

Installing Libraries
In order to use a library EPF and its corresponding binary library, you must carry
out three operations:

• Install the binary library in an appropriate directory.

• Install the library EPF in an appropriate directory.

• Modify your ENTRYS search rules.

These operations can be performed in any sequence.

Installing Binary Libraries
Where you install your binary library depends on who you want to have access
to it
You can install your binary library in the top-level directory LIB. LIB is a
directory of binary libraries. It is accessible to all users.

5-20 Second Edition

Library EPFs

You can install your binary library in a directory accessible to a specific set of
users.
If you place your library in the LIB top-level directory, users can load it during a
BIND session using the subcommand

LIBRARY libraryname

If you place your library in another directory, users must load it using the full
pathname with either

LIBRARY libraryjpathname

or

LOAD library jpathname

Note The only difference between the LIBRARY and LOAD subcommands in BIND is that
LIBRARY adds LIB> to library-name when you don't specify a patiiname for the
library. The command

LIBRARY library name

is equivalent to the command

LOAD LlB>libraryjiame

The advantage of installing your binary library in the LIB top-level directory is
that users can build with it using the same subcommand format they use to build
with Prime-supplied libraries. Installing your binary library in another directory
is useful when you want to restrict use of the binary library to a specific group of
users.

Installing Library EPFs

PRIMOS reserves the top-level directory LIBRARIES* for library EPFs. You
can install your library EPF either in LIBRARIES*, or in some other directory
accessible to a specific group of users.
Wherever you install it, a library EPF is only accessible to the dynamic linking
mechanism if the library's pathname appears in an ENTRYS search list. Even if
you install a library EPF in the LIBRARIES* top-level directory, a user cannot
run programs that call the library unless the library's pathname is included in the
user's ENTRYS search rules.

Second Edition 5-21

Advanced Programmer's Guide I: BIND and EPFs

Setting ENTRYS Search Rules
The dynamic linking mechanism uses the ENTRYS search list to resolve
dynamic links during program execution. An ENTRYS search list contains the
pathnames of libraries to be searched for routines. Any library EPF that you
construct must be listed in the ENTRYS search list of all users that will run
programs that call routines in your library EPF. This section describes the steps
needed to include a library EPF in an ENTRYS search list.
The dynamic linking mechanism can use either of the following search lists:

• The systemwide default ENTRYS search list, SYSTEM>ENTRY$.SR

• A private ENTRYS search list maintained by each user

Private search lists usually include the system default search list along with
additional library pathnames. Therefore programs run by users with private
search lists can normally make use of both the system default and user-specific
libraries.

Modifying the System Default ENTRY$ Search List
You can make your library EPF accessible to users throughout the system by
adding the library's pathname to SYSTEM>ENTRY$.SR. Typically, you request
that the System Administrator install your library EPF in the LIBRARIES*
directory, and add its pathname to the system default ENTRYS search list.

Caution Typically, you do not have access to SYSTEM>ENTRY$.SR unless you are the System
Administrator. If you modify it, it is possible to accidentally render it unusable, such as
by inserting a duplicate search rule. If ENTRYS is corrupted, not only will users be
affected, but a subsequent cold start of the system may render the supervisor terminal
nearly ineffective. In such a situation, you will be unable to use ED or EMACS to fix the
file, since both editors themselves reference faulted IPs to call system subroutines via the
dynamic linking mechanism.

The solution to this problem is to use the non-shared editor, NSED, to fix the default
search list file. NSED runs under PRIMOS II, and therefore does not ever reference
faulted IPs. Rebooting the system would then load the corrected default search list file.

When a user logs in, PRIMOS supplies the user with the current system default
search lists. A change to the system default search lists only affects a user when
the user's process is reinitialized. Users who are already logged in when the
System Administrator modifies a system default search list need to issue the
SET_SEARCH_RULES command (with the -DEFAULT option) or the
INITIALIZE_COMMAND_ENVIRONMENT (ICE) command to update their
system default search lists.

5-22 Second Edition

Library EPFs

Creating and Modifying Private Search Lists

Alternatively, you can create or modify private ENTRYS search lists for users
who run programs that call your library EPF. Usually such private search lists
include both the system default ENTRYS search rules and the pathnames of
user-specific libraries. You include the system default ENTRYS search rules by
including the -SYSTEM search rule in the private search list.
For example, suppose you want to make your library EPF available only to a
restricted group of users who have access to the directory
MY_GROUP>LIBRARIES. If you install MYJLIBRARY.RUN in the directory
MY_GROUP>LIBRARIES, you can create the following ENTRYS search list
for group members:

-SYSTEM
MY_GROUP>LIBRARIES>MYLIBRARY.RUN

Suppose you save this file as MY_GROUP>ENTRY$.SR. Each group member
who plans to run a program that accesses your library EPF must then issue the
command

SET_SEARCH_RULES MY_GROUP>ENTRY$.SR

This sets the user's ENTRYS search list.
When a user logs in or reinitializes the user process (by issuing the ICE
command), all search lists are automatically reset to system defaults. For this
reason, users who want to always use a private search list should add the
SET_SEARCH_RULES command to their LOGIN.CPL or LOGIN.COMI file.
This insures that the user is always accessing the proper search list

Note If a user complains that a LINKAGE_FAULT$ condition was signaled, indicating a
failure to link to an entrypoint in your library EPF, it may be that the user is not using an
ENTRYS search list that includes your library EPF. Ask the user to issue the
LIST_SEARCH_RULES command (abbreviated LSR) and be sure that the pathname of
your library EPF is listed.
If the user has the correct entrypoint search list, then use the
LIST_LIBRARY_ENTRYPOINTS command (abbreviated LLENT) to ensure that the
desired subroutine is, in fact, an entrypoint in your library EPF.

The SET_SEARCH_RULES, LIST_SEARCH_RULES, and LLENT commands
are described in the PRIMOS Commands Reference Guide; the search rules
facility is described in the Advanced Programmer's Guide II: File System.

Second Edition 5-23

Registered EPFs
6

Registered EPFs provide an efficient means to implement shared
programs and libraries. How much a given program can benefit from
registration depends on how the program is coded. This chapter describes

Deciding whether a program is a good candidate for registration
Writing programs for registered EPFs
Building registered EPFs with BIND
Creating binary libraries that reference registered library EPFs
Registering EPFs (performed by the System Administrator)
Accessing registered EPFs
Getting information about registered EPFs

Should You Register an EPF?

You can register both program EPFs and library EPFs. Registering an
EPF offers a number of advantages both for system and individual user
performance:

• Registered EPFs share linkage, reducing the system working set.
• Dynamic links in shared linkage are pre-snapped, reducing execution

time.
• Per-user data is generally initialized faster, reducing startup time.

Nearly all EPFs can take advantage of these features, but some EPFs will
benefit more than others. This section gives you some guidelines for
identifying EPFs that are likely to benefit most.

Second Edition 6-1

Advanced Programmer's Guide I: BIND and EPFs

Shared Linkage
One of the major advantages of registered EPFs is that they can share
linkage. Shared linkage allows registered EPFs to use less system
resources and to startup and run faster.

• Because only one copy of the shared linkage needs to be maintained
on the system, a registered EPF being run by several users occupies
fewer system resources than a dynamic EPF version of the same EPF.
Systemwide, the registered EPF version uses less memory and
requires less paging per user to file system disks.

• Dynts in shared linkage are snapped at registration time. Since these
dynts need not be snapped at runtime, the registered EPF runs
faster.

The more linkage an EPF has, the more it can benefit from registration.
Highly modular programs tend to have more linkage. Each routine in your
program or library that is not shortcalled has an Entry Control Block
(ECB). Registration places these ECBs into shared linkage. Calls to
subroutines generate IPs. Registration places many of these IPs in shared
linkage.
You can share linkage for internal calls to routines within the program
EPF. You can also share linkage for external calls to routines in registered
library EPFs and PRIMOS direct entries. You cannot share linkage for
external calls to dynamic library EPFs or static-mode libraries. Therefore,
if your program calls mostly PRIMOS direct entries, internal routines, and
external routines in other registered EPFs, then your program or library
can benefit from registration.

Other Factors
Even programs that do not generate a large amount of shareable linkage
may benefit from registration. PRIMOS creates and stores an initialized
copy of per-user data and linkage at registration time. When a user
invokes a registered EPF, this copy can be quickly mapped to the user's
address space so the EPF starts up faster. In a dynamic EPF, per-user
linkage/data segments must be expanded from templates each time a user
invokes the EPF.
Although nearly all programs can benefit in some way from registration,
keep in mind that a registered EPF continues to occupy system resources
until it is unregistered. A registered EPF remains mapped to shared
segments, and PRIMOS must store information about it even if no one
invokes it. Frequently used and widely used programs and routines are
therefore better candidates for registration than programs or routines

6-2 Second Edition

Registered EPFs

rarely used or run by only a few users. In general, linkage-intensive
programs tend to benefit the most from registration.
Registered EPFs perform fewer paging operations to the user's file system
disk space, but may require more paging disk space than dynamic EPFs.
This should improve I/O performance, although the total number of page
faults may not decrease. It may be necessary to increase the size of the
paging disk to support large registered EPFs.
Figure 6-1 illustrates how registered EPFs have the ability to use both
shared and per-user linkage. In most cases, shared is preferred.

Dynamic Program EPF• Single entrypoint
• Direct invocation
• Per-user linkage

Dynamic Library EPF• Multiple entrypoints
• Indirect invocation
• Per-user linkage

Registered Program EPF
• Single entrypoint
• Direct invocation
• Shared linkage

(optional per-user
linkage)

Registered Library EPF• Single entrypoint
• Direct invocation
• Shared linkage

(optional per-user
linkage)

Figure 6-1. Comparison of Properties Between Dynamic EPFs
and Registered EPFs

Creating Registered EPFs
Prime recommends that you build registered EPFs in the following stages:

1. Build, test, and debug a program as a dynamic EPF.
2. Relink with BIND to create a registrable EPF.
3. Test the registrable version by running it unregistered.
4. Have the System Administrator register the EPF.
5. Add the -PUBLIC rule to the appropriate search lists.
6. Test the registered version.

Second Edition 6-3

Advanced Programmer's Guide I: BIND and EPFs

These stages apply to the creation of both registered program EPFs and
registered library EPFs. By following this sequence, you can quickly
isolate problems that occur at the coding, building, or registration stages.

Compiler Support
For a program EPF or a library EPF to benefit from registration, it must
have been compiled with a compiler that supports Z frame organization.
Traditionally, Prime compilers divided code into three frames: the
procedure frame, the data frame, and the stack frame. The data frame
contained data, common areas, and linkage information. More recent
Prime compilers support a fourth frame, the Z frame. The Z frame is a
separate frame that holds the linkage information that was previously
stored in the data frame.
As of Translator Family Revision T3.0, all Prime-supplied compilers,
except FTN, support Z frame organization. The Z frame is automatically
generated during all program compiles. These compilers generate code
that can take advantage of all the benefits of EPF registration. Z frame
organization should have no effect on the linking, loading, or execution of
programs that are not registered. Therefore, recompilation of programs is
never required, and is only recommended if you intend to use that
program to build a registered EPF.
Table 6-1 shows the first release of each compiler that fully supports
registered EPFs.

Table 6-1. Compiler Support for Registered EPFs

Compiler First Release Supporting Registered EPFs

PMA PRIMOS Rev. 21.0

C T1.2

CBL T2.0

COBOL85 Compiler Rev. 1.0
FTN Not supported

F77 PRIMOS Rev 20.2

Pascal T3.0

PLIG T3.0

PL/I T3.0

VRPG PRIMOS Rev. 20.2

6-4 Second Edition

Registered EPFs

Code compiled with the FTN compiler or with older versions of the other
compilers can be used to build a registered EPF, but performance benefits
are smaller because linkage cannot be shared. For full registered EPF
support, you should convert FTN code to F77 and recompile. Code
compiled with earlier versions of other compilers should be recompiled
with more recent compiler versions, as indicated in Table 6-1.

Existing PMA programs require some minor source code changes to create
registrable EPFs with shared linkage. Appendix A shows you how to
create registrable EPFs with PMA.

Coding Guidelines

For programs written in high-level languages, no programming restrictions
apply. The only guideline is to follow good programming practices. In
particular, you need not worry that a highly modular program will start up
or run slowly because it uses a lot of linkage. Because shared dynts axe
snapped and linkage segments created when you register the EPF,
registered EPFs start quickly even when they contain a great deal of
linkage.
Remember that shared dynts are only used for calls to PRIMOS direct
entries and registered library EPFs. PRIMOS snaps shared dynts to these
libraries when you register the EPF. Your program EPF may also contain
per-user (non-shared) dynts. All calls to routines in dynamic library EPFs
and shared static-mode libraries are per-user dynts. You can also specify
per-user dynts to routines in registered library EPFs. Per-user dynts are
snapped during program execution.
If your EPF calls routines in user-written or other non-Prime supplied
libraries, linkage to those routines can only be shared if those libraries are
registered. To get maximum benefit from registration of a program EPF,
you should also register the library EPFs that contain frequently called
routines.

Note If you maintain shared static-mode programs or shared static-mode libraries on
your system, you should consider converting them to registered EPFs. Appendix C
provides guidelines for converting static-mode code to registered EPFs.

To maximize performance of registered EPFs, you should keep in mind
that when you invoke a registered EPF, PRIMOS initializes all of the
registered library EPFs linked to your registered EPF by shared dynts.
Therefore, a program that calls routines in many registered EPF libraries

Second Edition 6-5

Advanced Programmer's Guide I: BIND and EPFs

may be less efficient than one that calls routines in fewer registered EPF
libraries. To improve initialization efficiency of registered EPFs

• Consolidate frequently called routines into fewer registered library
EPFs.

• Reduce the size of these registered library EPFs by removing rarely
called, personal, and obsolete routines. Registered EPFs should
contain code that is frequently called by multiple users, not rarely
used routines or programs used by only a single user.

• Establish per-user (rather than shared) dynts to rarely called routines
in registered EPF libraries. (You establish establish the dynt type
when you use BIND to build the EPF.)

• Avoid nesting registered library EPFs with shared dynts. An
example of this is a registered EPF that calls a routine in a registered
library EPF and that routine calls a routine in another registered
library EPF. In this case, if all of these links are shared dynts,
PRIMOS initializes all three registered EPFs (the program EPF and
the two library EPFs) even if these routines are never called during
program execution. (Nesting shared dynts also complicates EPF
registration, as described later in this chapter.)

PRIMOS direct entries do not require initialization. You should specify
PRIMOS direct entries as shared dynts, regardless of how frequently they
are called.

Compiler Options
EPFs must be compiled in V-mode or I-mode.
The -PBECB compiler option should be avoided, in most cases, because
this option substantially reduces the amount of shared code. Chapter 4
provides further details on the -PBECB option.

Building With BIND

It is recommended that you initially build and test all programs as
dynamic EPFs, then rebuild the tested version as a registered EPF. Once
you have built and tested an EPF as a dynamic EPF, it is not difficult to
rebuild it with BIND to create a registered EPF.
BIND provides several subcommands for building a registered EPF.

6-6 Second Edition

Registered EPFs

Using the -REGISTER Option
The only requirement for building a registered EPF is to add the
-REGISTER subcommand option to the first subcommand of the build
sequence:
To build a registered program EPF, use the subcommand

PROGMODE -REGISTER

To build a registered library EPF, use the subcommand

LIBMODE
- PROGRAM
- PROCESS - REGISTER

When you specify -REGISTER to create a registered library EPF, you
must also specify either -PROGRAM or -PROCESS for the per-user
linkage/data of the registered library EPF. Chapter 5 describes how to
determine whether a library EPF should be program-class or process-class.

Setting the Dynt Type
When using BIND to build an EPF, you specify whether the dynts are
shared or per-user (non-shared).

• Dynts to dynamic library EPFs and shared static-mode libraries must
be per-user.

• Dynts to PRIMOS direct entries can be either shared or per-user.
Normally, you want them to be shared in order to get the full benefits
of registration. Shared dynts are preferable for all references to
PRIMOS direct entries, because PRIMOS direct entries do not
require initialization.

• Dynts to registered library EPFs can be either shared or per-user. A
shared dynt saves dynt-snapping time during execution, but requires
PRIMOS to initialize the registered library EPF at the beginning of
program execution. PRIMOS initializes the registered library EPF
even if the dynt to that library is never executed. Therefore, it is
advantageous to establish this dynt as a shared dynt if you expect the
program to use the dynt during normal execution. If, however, the
dynt is almost never used (for example, a call to an error handler), it
may be advantageous to establish the dynt as a per-user dynt.

Second Edition 6-7

Advanced Programmer's Guide I: BIND and EPFs

You set the dynt type by using the DEFAULT_DYNT_TYPE subcommand
and the DYNT subcommand.
In most cases, you should set the default dynt type to -SHARED when
using BIND to build a registered EPF. You set the default dynt type with
the subcommand

DEFAULT_DYNT_TYPE -SHARED

Give this subcommand before loading any binary libraries. This assures
that BIND places all dynts optimally in your registered EPF.
You can respecify the DEFAULT_DYNT_TYPE several times during a
BIND session.
You can use the DYNT subcommand to declare the dynt type of individual
dynts. If you do not specify a dynt type with the DYNT subcommand,
BIND first defaults to the most recent setting of
DEFAULT_DYNT_TYPE; if you have not specified a default dynt type
during that BIND session, BIND defaults to per-user.
Table 6-2 shows the dynt types that result from all possible combinations
of DEFAULT DYNT TYPE and DYNT subcommand values:

Table 6-2. Dynt Types Established by BIND

DYNT -SHARED

DEFAULT_DYNT_ TYPE
DEFAULT DYNT TYPE

- P E R J J S E R N o t I s s u e d

-SHARED Shared Shared Shared

-PERJJSER Per-user Per-user Per-user
-DEFAULT or no
option specified

Shared Per-user Per-user

Building With the DYNT Subcommand: You can place dynts to
user-supplied routines in a registered EPF runfile by using the DYNT
subcommand of BIND. When you do this, be sure that BIND puts the
dynts in the appropriate place:

• Dynts to routines in registered library EPFs and PRIMOS direct
entries should be shared.

• All other dynts should be per-user.

The DYNT subcommand defaults to -DEFAULT, so that BIND places the
dynt according to the most recent setting of the DEFAULT_DYNT_TYPE

6-8 Second Edition

Registered EPFs

subcommand. If you have not specified a default dynt type during the
BIND session, the DYNT subcommand without options creates a per-user
dynt.
The following example shows how to use the DYNT -SHARED
subcommand to create shared dynts to three subroutines in a
user-supplied registered library EPF:

OK, BIND
[BIND Rev. T3.0-23.0 (c) 1990, Prime Computer, Inc.]
: PROGMODE -REGISTER
EPF is registrable program type.

LO PR0G_A
L I
DYNT -SHARED FOO, MOO, BAR

BIND COMPLETE

You can do the same thing by setting the default dynt type to shared:

OK, BIND
[BIND Rev. T3.0-23.0 (c) 1990, Prime Computer, Inc.l
: PROGMODE -REGISTER
EPF is registrable program type.

LO PROG_A
L I
DEFAULT_DYNT_TYPE -SHARED
DYNT FOO, MOO, BAR

BIND COMPLETE

If you have a user-supplied library EPF that you link to using the DYNT
subcommand of BIND, you may want to consider creating a binary library
containing dynts to the entrypoints. You can then link to multiple routines
by loading a single binary library instead of creating individual dynts to
each routine. EDIT_BINARY greatly simplifies the process of creating
binary libraries. You establish dynt types when using EDITBINARY to
build a binary library. The next section, Dynt Types and Binary Libraries,
gives guidelines for building binary libraries.

Dynt Types and Binary Libraries
Each dynt in a binary library can be of dynt type SHARED, PERJJSER,
or DEFAULT BIND cannot change a SHARED or PERJJSER dynt type
specified in a binary library. BIND can change a DEFAULT dynt type
specified in a binary library. Dynt type DEFAULT means that BIND
must set the dynt type to either PERJJSER or SHARED when you
submit the binary library to BIND. Setting the dynt type during a BIND
session is described in the previous section.

Second Edition 6-9

Advanced Programmer's Guide I: BIND and EPFs

Binary Libraries Supplied by Prime: In binary libraries supplied by
Prime, dynts to PRIMOS direct entries are marked as SHARED, and
dynts to routines in registered library EPFs are marked as DEFAULT.
Dynts to other libraries are marked as PERJJSER. You specify the dynt
type for the dynts marked DEFAULT when you load this binary library
during a BIND session. BIND sets DEFAULT dynts to the dynt type
specified by the BIND DEFAULTJDYNTJTYPE command. For example,
if you set the BIND default dynt type to SHARED before loading one of
these binary libraries, BIND places all dynts marked SHARED or
DEFAULT in shared linkage and place dynts marked PERUSER in
per-user linkage.
User-created Binary Libraries: When you use EDITBINARY to
create a binary library, you should mark dynts to PRIMOS direct entries
as SHARED and dynts to routines in registered library EPFs as
DEFAULT. Mark dynts to routines in other libraries as PERJJSER.
This give the user the flexibility to assign either dynt type to dynts for
PRIMOS direct entries and routines in registered library EPFs. In most
cases, you would assign dynt type SHARED to these dynts during the
BIND session.
All dynts in pre-Rev. 23.0 binary libraries are considered per-user dynts.
Even if dynts in these binary libraries reference routines now in registered
library EPFs, BIND still puts these dynts in per-user linkage. If you build
with your own pre-Rev. 23.0 binary libraries, you may want to rebuild these
binary libraries in order to generate more efficient registered EPFs. The
section, Setting Dynt Types in Binary Libraries, shows you how.
Loading a Binary Library: You can place dynts in a registered EPF by
loading a binary library. You load a binary library using either the LOAD
or LIBRARY subcommand of BIND. The following example shows a
build sequence with a user-created binary library. It creates a registered
EPF named TEST, using a binary library named TESTJJB.

OK, BIND
[BIND Rev. T3.0-23.0 (c) 1990, Prime Computer, Inc.]
: PROGMODE -REGISTER
EPF is registrable program type.

LO TEST
DEFAULT_DYNT_TYPE -SHARED
LI MYLIBS>TEST_LIB
L I

BIND COMPLETE
: FILE
OK,

6-10 Second Edition

Registered EPFs

Because the appropriate dynt types (DEFAULT or PERJJSER) were set
when you used EDIT_BINARY to build the binary library, you can just set
the DEFAULTJDYNTTYPE during the BIND session to resolve the
dynts of dynt type DEFAULT.
This BIND build sequence uses a pathname with the LIBRARY
subcommand, because the user-supplied library is not installed in the LIB
top-level directory. If the library was in LIB, you would use the LOAD
subcommand rather than the LIBRARY subcommand.
The next section shows you how to use EDIT_BINARY to build binary
libraries that conform to Prime standards.

Setting Dynt Types in Binary Libraries

To build binary libraries according to Prime standards, you should

• Mark dynts to registered library EPFs and PRIMOS direct entries as
-DEFAULT

• Mark dynts to routines not in registered library EPFs or PRIMOS
direct entries as -PER USER.

Note Do not mark dynts to routines in dynamic library EPFs as DEFAULT. If these dynts
are marked as default, then the standard BIND build sequence given above puts
them in shared linkage. An EPF with such dynts in shared linkage cannot be
registered successfully.

Using the Prime standard for binary libraries provides maximum flexibility
and simplifies program maintenance. Other options are available,
although not recommended: When using EDITBINARY to build a
binary library, you can mark dynts to PRIMOS entrypoints and registered
library EPFs as PERJJSER, but registered EPFs built with such a binary
library do not gain the benefits of dynt sharing. You can also use
EDITBINARY to mark these dynts as SHARED. In this case, you need
not set the DEFAULTJDYNTTYPE subcommand to SHARED when
you use BIND to build with such a binary library. However, you cannot
use this binary library to create per-user dynts.
Using the EDIT_BINARY DYNT Subcommand: You can create dynts
of all types in a binary library using the DYNT and
DEFAULTJ)YNT_TYPE subcommands of EDITJBINARY. These
EDIT_BINARY subcommands are very similar to the corresponding
BIND subcommands. The principal difference is that during an
EDITBINARY session you can establish a dynt of dynt type DEFAULT
A dynt type of DEFAULT is resolved when you submit the binary library
to a BIND session. Table 6-3 shows the possible combinations of

Second Edition 6-11

Advanced Programmer's Guide I: BIND and EPFs

DEFAULT J)YNT_TYPE and DYNT subcommands during an
EDIT_BINARY session:
Table 6-3. Dynt Types Set by the DYNT Subcommand of EDITBINARY

DYNT -SHARED

DEFAULT_DYNT_TYPE

-PERJUSER -DEFAULT DEFAULTJDYNTJTYPE
not issued

-SHARED Shared Shared S h a r e d S h a r e d

-PERJUSER Per-user Per-user P e r - u s e r P e r - u s e r
-DEFAULT
or option not
specified

Shared Per-user D e f a u l t , P e r - u s e r
determined
at BIND time

Chapter 9 contains a complete reference to the EDITJBINARY
subcommands.
Using the EDIT_BINARY READ Subcommand: If you create dynts
using the READ subcommand with no options, EDITJBINARY
automatically sets the dynt types according to the Prime standard:

• When reading a registrable library EPF, dynts are marked as
DEFAULT.

• When reading a dynamic library EPF, dynts are marked as
PERJJSER.

You can use the READ subcommand's -PERJJSER, -SHARED, and
-DEFAULT options to override this automatic dynt type setting. (Note
that -DEFAULT is not the same as supplying no options. -DEFAULT
creates default dynts. With no options the dynt type depends on the type
of library being read.)
Table 6-4 shows the possible dynt types created by the READ
subcommand during an EDITJBINARY session.

Table 6-4. Dynt Types Set by the READ Subcommand of EDIT_BINARY

Options Values
-SHARED Shared

-PER_USER Per-user

-DEFAULT Default, determined at BIND time

No option specified Set by library type:
Registered = Default
Dynamic = Per-user

6-12 Second Edition

Registered EPFs

The EDIT_BINARY DEFAULTJJYNTTTPE subcommand is only used
with the DYNT subcommand; it does not affect dynt types established
using READ. Chapter 9 contains a complete reference to the
EDITJBINARY subcommands.
Two EDIT_BINARY Examples: The following example creates a binary
library containing default dynts by reading a user-created registered
library EPF:

OK, EDIT_BINARY
[EDITBINARY Rev. T3.0-23.0 (c) Prime Computer,Inc. 1990]
: RFL
: READ MY_LIB.RUN

L i b r a r y c r e a t i o n d a t e : 9 0 - 1 2 - 0 3 . 1 4 : 0 6 : 2 4 . M o n
L i b r a r y t y p e : r e g i s t e r e d p r o g r a m
N u m b e r o f e n t r i e s : 4

End processing MY_LIB.RUN.
: SFL

FILE MY BIN
OK,

You can check the dynt types created with the LISTCONTENTS
subcommand.

OK, EDIT_BINARY
[EDITBINARY Rev. T3.0-23.0 (c) Prime Computer,Inc. 1990]
: OPEN MY_BIN
: LIST_CONTENTS -DYNTS
Contents of file "MY_BIN":
I N I T R T (D F) B A R (D F) M O O (D F)
FOO (DF)
End of list.
: QUIT
OK,

Here the display shows the dynt types as default (dF).
The next example shows how to use the READ subcommand to specify a
dynt type that differs from the standard type for that library. For example,
to create per-user dynts when reading a registered library EPF, you would
give the -PERJJSER option with the READ command.

OK, EDIT_BINARY
[EDIT_BINARY Rev. T3.0-23.0 (c) Prime Computer,Inc. 1990]
: RFL
: READ MY_LIB -PER_USER

L i b r a r y c r e a t i o n d a t e : 9 0 - 1 2 - 0 3 . 1 4 : 0 6 : 2 4 . M o n
L i b r a r y t y p e : r e g i s t e r e d p r o g r a m
N u m b e r o f e n t r i e s : 4

Second Edition 6-13

Advanced Programmer's Guide I: BIND and EPFs

End processing MY_LIB
: SFL
: FILE MY_BIN
OK, EDIT BINARY
[EDIT_BINARY Rev. T3.0-23.0 (c) Prime Computer,Inc. 1990]
: OPEN MY_BIN
: LIST_CONTENTS -DYNTS
Contents of file "MY_BIN":
I N I T R T (P U) B A R (P U) M O O (P U)
FOO (PU)
End of list.
: QUIT
OK,

Rebuilding Old Binary Libraries
Prime recommends that you use EDIT_BINARY to rebuild your old
binary libraries, marking all dynts to routines not in registered library
EPFs as -PERJJSER. If you also use BIND to rebuild your dynamic
library EPFs as registered library EPFs, you can mark dynts to routines in
these libraries as -DEFAULT when you rebuild the binary libraries.

Supplying Initialization Routines
BIND provides the INIT_ENTRY subcommand, which allows you to
specify a routine in a registered EPF that PRIMOS will automatically
execute when you register the EPF. INIT_ENTRY is only meaningful if
building a registered EPF.
Typically, you establish such a routine to initialize data areas at
registration time. In a dynamic EPF, PRIMOS recreates the data image in
memory from the dynamic EPF file each time a user invokes the program.
It uses information in the EPF file to initialize the data image. In a
registered EPF, PRIMOS does not access the EPF file when a user invokes
the program; instead, PRIMOS copies the data image from shared
memory into the user's memory space. Therefore, it may be necessary to
initialize data areas at registration time, when these data areas are stored
in shared memory.
The INIT_ENTRY subcommand allows you to include a data initialization
routine when you build a registered EPF. When the System Administrator
registers the EPF, PRIMOS executes the initialization routine, then saves
the data image with the appropriate initialization. A routine specified by
INIT_ENTRY can accept arguments supplied at registration time, so you
can use such a routine to carry out installation-specific initialization.

6-14 Second Edition

Registered EPFs

To specify a registration-time initialization routine, use the subcommand

INITJENTRY entryname

during the BIND session, entryname must specify an existing routine (with
an Entry Control Block (ECB)). If it does not, or if the EPF you are
building is not a registered EPF, BIND displays an error message.
For example, suppose you are building a registered library EPF called
LIB Ji that includes an initialization routine called INTTJDB. You can
have PRIMOS execute INTTJDB when LIB_B is registered by giving the
INITJENTRY subcommand during the BIND build session:

OK, BIND
[BIND Rev. T3.0-23.0 (c) Prime Computer,Inc. 1990]
: LIBMODE -PROCESS -REGISTER
Library is registrable process class.
: ENTRYNAME -ALL
All successive entrypoints will be added to the

entrypoint table
: LO LIB_B
: LI
BIND COMPLETE
: INIT_ENTRY INIT_DB
Init Program ECB is INIT_DB at -0004/000122
: FILE
OK,

The System Administrator can pass parameters to the initialization routine
at registration time by using the -INTT option of the REGISTER JEPF
command. See the section Registering an EPF, below, for details.

Note When you create an initialization routine in a registered EPF, remember that your
program may have dependencies: a set of library EPFs that must be registered in
order to register your EPF. These library EPFs can also contain initialization
routines. In fact, you can have more than one of these library EPF routines
perform initialization. If you do this, request that the System Administrator use
the -INIT_DEPENDENCYJLIST option of the REGISTER_EPF command to
specify the order in which initialization routines should be executed. For more
details on dependency lists and REGISTEREPF options, see the section
Registering EPFs, below.

Creating Shared Common Areas

Registered EPFs give you more flexibility than dynamic EPFs in creating
common areas. Dynamic EPFs can share read-only common areas.
Registered EPFs can share both read/write and read-only common areas.

Second Edition 6-15

Advanced Programmer's Guide I: BIND and EPFs

Testing an EPF

The ability to create shared read/write common areas makes it possible to
use registered EPFs to share data among both programs and processes.
Using the -SHARE option of the ALLOCATE subcommand of BIND,
you can specify that a common area be placed in the shared portion of a
registered EPF. You can use the -SHARE option to share both read/write
and read-only common areas.
With dynamic EPFs, only read-only data areas can be shared, and the
sharing is done implicitly by BIND without programmer intervention.
For a detailed description of this procedure, see Chapter 7, Shared Data.

You should test an EPF prior to registering it. To test a complex EPF, the
following steps are recommended:

1. Use BIND to build the EPF as a dynamic EPF.
2. Test the dynamic EPF.
3. Use BIND to rebuild the EPF as a registrable EPF.
4. Test the registrable EPF.
5. Register the registrable EPF.
6. Test the registered EPF.

When testing an EPF, you should be aware of how the different versions of
an EPF use shared segments. See Table 6-5.

Table 6-5. Memory Assignment for EPF Versions

EPF Version

Dynamic

Registrable

Registered

Per-user Segments Shared Segments
Data and linkage

Data, linkage, procedure code
and literals
Data

Procedure code and liter
als

Procedure code, literals,
and linkage

Executing a registrable EPF requires more resources than running the
same program as either a dynamic EPF or a registered EPF. In general,
registrable EPFs should only be used for testing purposes.

6-16 Second Edition

Registered EPFs

Registering EPFs

Only a System Administrator can register an EPF. An EPF is considered
registered when the System Administrator uses the REGISTERJEPF
command to perform the registration process. PRIMOS may suspend the
registration of an EPF until the successful registration of other related
EPFs. A suspended EPF cannot be executed as a registered EPF;
however, the dynamic EPF or registrable EPF version of the EPF may be
executed.
Although only a System Administrator can register an EPF, as a
programmer you should understand the registration process so you can
provide EPFs that can be registered successfully. You may also need to
provide information and support to the person who registers your
programs. You may want to provide a command file or CPL program that
contains the necessary registration commands to your System
Administrator. This section gives you the basic information you need.
The System Administrator can register an EPF using either the
REGISTER_EPF command or the EPF$REG subroutine. Registration is
usually performed as part of the cold-start procedure, but the System
Administrator can register an EPF at any time. The REGISTER_EPF
command is described in the Operator's Guide to System Commands. The
EPF$REG subroutine is described in the Subroutines Reference II: File
System.

Dependency Lists

The basic rule of EPF registration is that shared dynts in a registered EPF
may only link to

• Routines in other registered EPFs
• PRIMOS direct entries

The reason for this restriction is straightforward: in order to share a dynt,
PRIMOS must reference the routine in a fixed location with a virtual
address that is the same for all users. In other words, the called routine
must also reside in shared memory. PRIMOS direct entries and routines
in registered library EPFs meet this condition. Routines in dynamic
library EPFs do not.

Second Edition 6-17

Advanced Programmer's Guide I: BIND and EPFs

Note A registered EPF can, of course, call routines in dynamic library EPFs. Links to
routines in dynamic library EPFs are per-user dynts, not shared dynts. A registered
EPF can also call routines in other registered EPFs using per-user dynts. Libraries
linked to your registered EPF by per-user dynts are not registration dependencies.

Direct and Indirect Dependencies: Successful registration of an EPF
with shared dynts to routines in other EPFs depends on registration of the
called EPFs. Registered EPFs called by shared dynts in your registered
EPF are said to be dependencies of your registered EPF. Such
dependencies may be both direct and indirect:

• A direct dependency is a registered EPF called by a shared dynt in
your registered EPF.

• An indirect dependency is a registered EPF not directly called by
your EPF, but called by a dependency of your EPF.

For example, suppose the registered EPF PROG_A uses shared dynts to
call routines in the libraries LIB_B and LIB_C and that one of the called
routines in LIBC uses a shared dynt to call a routine in LIB_D which in
turn calls a routine in LIB Ji. In this case, LIB_B and LIB_C are direct
dependencies for PROG_A. LIB_D and LIB Ji are indirect dependencies.
In order to register an EPF successfully, all direct and indirect
dependencies must also be registered. When you build a registered EPF
with shared dynts to other registered EPFs, you must be aware of all direct
and indirect dependencies. If any of these dependencies are not already
registered on your system, they must also be registered in order to register
your EPF successfully.
Usually, registered library EPFs supplied by Prime are registered at
system cold start. You can use the LIST_REGISTERED_EPF command
to determine which libraries are actually registered on your system. If
your EPF has any dependencies that are not registered, you need to supply
this information to your System Administrator so that all these required
libraries can also be registered.

Registered EPF States
The registration process is designed so that you can register an EPF and
its dependencies in any order. PRIMOS allows you to register an EPF
even if all of its dependencies have not been registered first. Such a
registered EPF is placed in a suspended state and cannot be executed until
all dependencies have been resolved. (If this were not the case, you would
need to register the EPFs in order, beginning with indirect dependencies,
and you would be unable to register EPFs with circular dependencies.)

6-18 Second Edition

Registered EPFs

During registration, each EPF passes through two phases, each phase
having two states:

1. Linkage phase
o Linkage uninitialized
o Linkage initialized

2. Invocation phase
o Invocation suspended
o Invocation ready

Linkage: In the first phase of the registration process, PRIMOS locates
and resolves (snaps) all of the registered EPF's shared dynamic links.
A registered EPF is uninitialized when any shared dynamic links remain
unsnapped.
A registered EPF is initialized when all shared dynamic links have been
snapped.
One cause of uninitialized linkage is a shared dynt that references a
routine in a dynamic library EPF or shared static-mode library. Only
per-user (non-shared) dynts can access routines in these libraries. To
correct this problem, you must either use BIND to rebuild your program
EPF, specifying the per-user dynt type for these references, or place the
referenced routines in a registered EPF.
As PRIMOS resolves shared dynamic links, it adds the names of the
library EPFs referenced by these dynamic links to a list of dependencies.
After attempting to resolve all shared dynamic links, PRIMOS proceeds to
the invocation phase and checks the contents of this dependencies list.
Invocation: In the second phase of the registration process, PRIMOS
determines if all of the dependencies of the registered EPF have been
registered.
A registered EPF is suspended when it is registered, but the EPF cannot
be executed. A registered EPF is suspended under any of the following
conditions:

• The registered EPF was not successfully initialized.
• An EPF that is a direct or indirect dependency cannot be located.
• An EPF that is a direct or indirect dependency has not been

initialized.
• An EPF that is a direct or indirect dependency is suspended because

one of its dependencies cannot be located or has not been initialized.

Second Edition 6-19

Advanced Programmer's Guide I: BIND and EPFs

If a registered EPF was not successfully initialized, its status is
uninitialized and suspended. If a registered EPF was successfully
initialized, but has some problem with its dependencies, its status is
initialized but suspended.
A registered EPF is ready when all the shared dynamic links are resolved
and all direct and indirect dependencies are ready as well.

Cross-checking: PRIMOS maintains a list of all suspended EPFs.
Whenever a new EPF is registered, PRIMOS automatically cross-checks
this list of suspended EPFs.

• When you begin registering an EPF, PRIMOS checks all of its
suspended EPFs to see if your EPF can be used to resolve any
previously unresolved dynamic links.

• When an EPF is updated from suspended to ready status, PRIMOS
checks to see if it can update the status of any EPFs that call the
newly updated EPF.

Because PRIMOS constantly updates the status of all affected EPFs, you
can register an EPF and its dependencies in any order. When you register
an EPF before registering all of its dependencies, the EPF is marked as
suspended. Once you have registered all of the dependencies, the EPF's
state is updated to ready.

Multiple EPF Registrations
The System Administrator can register more than one EPF with the same
name. This permits you to supply a new version of a registered EPF
without requiring that the System Administrator unregister the old version.
This makes it possible to update a registered EPF without corrupting
some user's executing environment.

Note For simplicity, it is recommended that, whenever possible, the System
Administrator register all registered EPF at the same time during coldstart, and
that you avoid re-registering or unregistering EPFs while there are active users on
the system.

As each EPF is registered, it is given a registration number. The first
version of each EPF has registration number 1. Subsequent versions have
higher numbers. The LIST_REGISTERED_EPF command displays the
registration number of each registered EPF.
The following rules govern the use of multiple registered EPFs:

• Executing a program EPF automatically executes the
highest-numbered version of that program EPF.

6-20 Second Edition

Registered EPFs

An executing program EPF continues execution, unaffected by the
registering of a new version of that EPF or its dependencies.
A registered EPF accesses the dependencies that were the
highest-numbered versions at the time that the EPF was registered.
You must, therefore, re-register a program EPF to access a new
version of a library EPF.

Unregistering EPFs
The System Administrator can use the UNREGISTEREPF command or
the EPF$UREG subroutine to remove a registered EPF from the
registered EPF database. If an unregistered EPF is on the dependency list
of some other registered EPF, then the invocation status of the other EPF
is changed to suspended. For example, if EPF_A depends on EPF_B, then
unregistering EPFB causes EPF_A's invocation status to be changed to
suspended.
By default, the UNREGISTER_EPF command only unregisters EPFs that
are not currently in use. However, the System Administrator can specify
the -FORCE option to unregister an EPF that is currently in use by some
user or that is a dependency of an EPF that is currently in use. If this
happens, the user's executing environment is corrupted, and the executing
program will probably fail.

Setting Paging Disk Space
After registering an EPF, the System Administrator may need to change
the size of the system's paging disk. PRIMOS copies the per-user linkage
and data of a registered EPF from DTAR1 shared memory segments into
each user's DTAR3 memory segments when the user invokes the registered
EPF. This operation uses the system paging disk. The actual paging disk
requirements depend both on the size of the registered EPF and the
anticipated number of concurrent users of that EPF.
To calculate the paging disk requirements for a registered EPF, you need
the map output from BIND. A typical Segment portion of the BIND map
looks like this:

S e g m e n t T y p e L o w H i g h T o p
-0004 DATA 000000 000700 000700
-0002 SHARED PROC 001000 001074 001076
+0000 PROC 177777 000000 001000 EMPTY

To calculate the paging disk requirements you first need to determine the
size of each segment, in records. To do this, you take the Top offset for

Second Edition 6-21

Advanced Programmer's Guide I: BIND and EPFs

each negative segment and place it in the formula: (Top + 17777 / 20000) *
10. (All numbers are octal.) Using the BIND map example, you would
calculate:

-0004 : ((700 + 17777) / 20000) * 10 = (20677/20000) * 10 = 1*10 = 10
-0002: ((1076 + 17777) / 20000) * 10 = (21075/20000) * 10 = 1*10 = 10

Therefore, rounded to the nearest whole number, the size of each segment
is octal 10, or decimal 8 records.
To determine the total paging space requirement, you must add the size of
the SHARED PROC segment (in this case, decimal 8 records) to the total
non-shared requirement. To get the total non-shared requirement,
multiply the size of the non-shared DATA segment (in this case, decimal 8
records) by the anticipated number of concurrent users sharing the
registered EPF, plus 1 user. Concurrent users are those who have the EPF
mapped in their user memory; after execution, an EPF remains mapped
in the user's memory either until the user reinitializes the process (by
logging out, for example) or until the user explicitly unmaps the EPF. If
we assume 30 concurrent users, the calculation (in decimal numbers) for
this example is

8 DATA segment records * (30 + 1 users) = 248 non-shared records

248 non-shared records + 8 SHARED PROC segment records =
256 total records.

In this example, therefore, the extra paging requirement for running this
registered EPF is 256 records.

Using Registered EPFs
To use a registered EPF, you may need to first check that the EPF has, in
fact, been successfully registered (using the LIST_REGISTERED_EPF
command) and check your user search lists (using the
LIST_SEARCH_RULES command) to make sure they can access the
registered EPF. Once these tasks are completed, you can invoke the
registered EPF.
There are no restrictions on the mixing of EPF types. A registered
program EPF can call routines in registered library EPFs and dynamic
library EPFs. A dynamic program EPF can call routines in registered
library EPFs and dynamic library EPFs. You can maintain otherwise
identical programs and libraries of both types on the system. However,

6-22 Second Edition

Registered EPFs

EPF registration is most advantageous when a registered program EPF
calls routines in registered library EPFs or PRIMOS direct entries.

Getting Information on Registered EPFs

You can use three PRIMOS commands to check the status of registered
EPFs. These commands are available to all users.
LIST_EPF -REG Command: Use the -REG option of the LISTJEPF
(LE) command to get a listing of all registered EPFs on your system. The
display shows the invocation state of each registered EPF as either
Suspended or Ready. LISTJEPF -REG displays information about EPFs
in the system's registered EPF database rather than registered EPFs
mapped to any given user's address space. LISTJEPF is documented in
the PRIMOS Commands Reference Guide.

OK, LIST_EPF -REG

2 Process-Class Library EPFs.

(registered) (Ready) BOOTLEG.RUN
(registered) (Ready) BOOTLEG.RUN

2 Program-Class Library EPFs.

(registered) (Ready) PRIMIX_IX_CC_LIBRARY.RUN
(registered) (Ready) PRIMIX_IX_LIBCURSES.RUN

1 Program EPF.

(registered) (Suspended) CALL_LIB.RUN

OK,

In this example, LIST_EPF -REG shows that CALLJJB.RUN, a
registered EPF, is in the suspended state. This could be due to an
unresolved shared dynamic link or a suspended dependency. To determine
why this registered EPF is suspended, you can use the
LIST_REGISTERED_EPF command.
LIST_REGISTERED_EPF Command: Use the
LIST_REGISTERED_EPF (LRE) command to get detailed information
on the status of a specific registered EPF on your system. This command
lists the dependencies of a registered EPF, and indicates whether each
dependency is Direct or Indirect. This command also lists the names of
any unresolved entrypoints. This list of unresolved entrypoints lists all
unresolved shared dynamic links; it does not list unresolved per-user

Second Edition 6-23

Advanced Programmer's Guide I: BIND and EPFs

dynamic links. LIST_REGISTERED_EPF is documented in the
Operator's Guide to System Commands.

OK, LIST REGISTERED EPF

2 Process-Class Library EPFs.

BOOTLEG.RUN (Ready) (Reg is t ra t ion # 2)

No resolved/specified dependencies found.

No unresolved entrypoints.

BOOTLEG.RUN (Ready) (Reg is t ra t ion # 1)

No resolved/specified dependencies found.

No unresolved entrypoints.

2 Program-Class Library EPFs.

PRIMIX_IX_CC_LIBRARY.RUN (Ready) (Registration # 1)

No resolved/specified dependencies found.

No unresolved entrypoints.

PRIMIX_IX_LIBCURSES.RUN (Ready) (Registration # 1)

No resolved/specified dependencies found.

No unresolved entrypoints.

1 Program EPF.

CALL_LIB.RUN (Suspended) (Registration # 1)

No resolved/specified dependencies found.

Unresolved Entrypoint List:
BAR
FOO
MOO

OK,

In this example, LIST_REGISTERED_EPF shows that three references to
external routines (BAR, FOO, and MOO) could not be resolved during
registration. This could happen because the library EPFs that contain

6-24 Second Edition

Registered EPFs

these entrypoints have not yet been registered, or it could result from an
error in specifying the names of the dynts when BIND was used to build
the registered EPF. You can use the LIST_LIBRARY_ENTRIES
command to determine which library EPF contains these entrypoints.
LIST_LIBRARY_ENTRIES -REG Command: Use the -REG option of
the LIST_LIBRARY_ENTRIES (LLENT) command to display a list of
entrypoints contained in registered library EPFs on your system.

OK, LLENT BOOTLEG.RUN -REG
(ring 3 epf) BOOTLEG.RUN
Ring3 Proc-Class Lib EPF,
1 Total Entrypoints,
1 Selected Entrypoints
QED$E

LIST_LIBRARY_ENTRIES is documented in the PRIMOS Commands
Reference Guide.
EPF$ISREADY Subroutine: Use the EPF$ISREADY subroutine to
return the status of a specific registered EPF to a user program.
EPF$ISREADY returns a value of 1 if the registered EPF is ready and a
value of 0 if the registered EPF is suspended. EPF$ISREADY is
documented in the Subroutines Reference II: File System.

Setting Search Rules for Registered EPFs

In order to execute registered EPFs, you must include the -PUBLIC
search rule in your user search lists.

• To execute registered program EPFs, a user's COMMANDS search
list must include the -PUBLIC rule. This tells PRIMOS to search
the registered EPF database for command names.

• To execute an EPF that dynamically links to registered library EPFs,
a user's ENTRY$ search list must include the -PUBLIC search rule.
This tells PRIMOS to search the registered library EPFs for
entrynames during dynamic linking.

The -PUBLIC search rule is included in the default system search rules
for COMMANDS and ENTRYS. If you use the default search rules, no
change is necessary.
PRIMOS does not search registered EPFs in a specific order. This
presents a problem if two registered library EPFs contain a routine with
the same name. The simplest solution is to make sure that all registered
EPF routines have unique names. This, however, is not always possible.
When duplicate names are necessary, you can use -PUBLIC search rules

Second Edition 6-25

Advanced Programmer's Guide I: BIND and EPFs

to specify the names of specific registered EPF in each user's search list,
as follows:

-PUBLIC registeredepf namel
-PUBLIC registered_epfname2
-PUBLIC

In this example, PRIMOS first searches registered_EPF namel, then
searches registered_epf_name2, then searches all other registered EPFs.
You should end a list of -PUBLIC search rules with a -public search rule
with no EPF name option. This tells PRIMOS to search all the registered
EPFs.

Note In most cases, you should put in your search list both a -PUBLIC search rule to
access an EPF as a registered EPF and a standard search rule to access the EPF as
a dynamic EPF. This is especially critical for core system libraries. If you do not
include a search rule for the dynamic EPF version, unregistering an EPF library
makes that library inaccessible to all programs.
To make sure that the registered version of an EPF is executed in preference to
the dynamic version, be sure that the -PUBLIC search rule precedes any search
rules that lead to dynamic versions of registered EPFs. For example, suppose you
have placed a dynamic EPF version of the library LIBA.RUN in a directory
named MYLIBS. If you later register LIBA.RUN, you can be sure that
programs link to the registered version by placing the -PUBLIC search rule before
the MYJJBS >LIB_A.RUN search rule in your ENTRYS search list.

To list the contents of your search lists, use the LIST_SEARCH_RULES
command. To modify your search lists, use the SET_SEARCH_RULES
command. Both commands are documented in the PRIMOS Commands
Reference Guide. You can use the MONITOR_SEARCH_RULES
command to monitor ENTRYS search list performance. This command is
documented in the PRIMOS User's Release Document. For further details
on search rules, refer to the Advanced Programmer's Guide II: File System.

Registered EPF Access
Unlike dynamic EPFs, registered EPFs cannot be ACL protected. This is
because registered EPFs do not reside in the file system. You should be
aware that all users have access to registered EPFs on your system.

• All users can display the names of the registered EPFs on your
system using the LIST_REGISTERED_EPF and LISTJEPF -REG
commands.

• All users can execute registered program EPFs.

• All users can link to the entrypoints of registered library EPFs.

6-26 Second Edition

Registered EPFs

If you want to restrict access to a registered EPF, you should code the EPF
so that it must be invoked by a dynamic EPF interlude. You can then
restrict access by setting ACL protection on the interlude.

Invoking Registered Program EPFs
Registered Program EPFs can be executed either as commands or
command functions. The -PUBLIC search rule must be included in your
COMMANDS search list in order for PRIMOS to find and execute
registered program EPFs. If the -PUBLIC search rule is not included or
the EPF is not registered, PRIMOS returns the Not found error message.
In addition to the registered EPF, you may also have other copies of the
same program EPF on your system: a dynamic program EPF version (used
for testing), and a registrable EPF version (the program EPF you
submitted to the System Administrator for registration). Both of these
versions execute successfully, but neither takes advantage of EPF
registration. A registrable EPF executed in this way is mapped and
executed entirely in per-user segments. Because PRIMOS is unable to
share any of the registrable EPF, it executes inefficiently. Therefore, care
should be taken not to execute one of these versions rather than the actual
registered EPF.
If you supply the RESUME command with the complete pathname of the
EPF, PRIMOS does not use the COMMANDS search list, and therefore
does not execute the registered EPF. It instead executes the pathname
version.
If you incorrectly place the -PUBLIC search rule in the COMMANDS
search list, PRIMOS may find and execute another version of the program
EPF, rather than the registered EPF. The -PUBLIC search rule must be
closer to the beginning of the search list than the name of any directory
that contains a version of the EPF with the same name.
You can call a registered program EPF from another program using the
CPS subroutine. The EPFSRUN subroutine and the other EPFS
subroutines (EPFSINVK, EPFSMAP, etc.) cannot be used with registered
EPFs. Refer to the Advanced Programmer's Guide III: Command
Environment for further details.

Second Edition 6-27

Shared Data

7

EPFs provide three ways to share data:

• You can share data among programs within a process using a process-class
library EPF.

• You can share data among processes using a shared read/write common
area in a registered EPF.

• You can access shared data areas in static memory.

This chapter shows you how to use these data sharing methods.

Using Process-class Library EPFs
Process-class library EPFs provide a way to share data among programs within a
single user process. The technique is simple:

• Allocate the shared data structure as a static data area in a process-class
library EPF.

• Have one or more subroutines handle access to the data area.

Since the static data in the linkage/data area of a process-class library EPF is
only initialized once per user process, all programs that access the data through
the library subroutines have access to the same data.
In effect, this technique provides automatic dynamic allocation of per-process
shared data areas:

• PRIMOS allocates space for the shared data when it allocates the
linkage/data area of the library EPF.

• PRIMOS initializes the shared data area once per process when it
initializes the library EPF.

The most straightforward technique is to have a library entrypoint to handle each
data manipulation operation: writing to the shared data area, reading the data,

Second Edition 7-1

Advanced Programmer's Guide I: BIND and EPFs

reinitializing the data, and the like. Programs that access the shared data then do
so by calling these entrypoints. The sample program TUBES_LIB.C below
shows you how to create a library EPF that handles shared data in this way.
Note that your subroutines must provide for the possibility that more than one
program attempts to update the shared data simultaneously. The section
Providing for Simultaneous Updates, below, describes some techniques for doing
this. The sample program TUBESJLIB.C includes provisions for simultaneous
updates.
You must also observe one important restriction when creating process-class
libraries to do this kind of per-process data sharing: because of the restriction on
library class mixing, the library routines that access the shared data must not call
routines in program-class libraries. Remember that language-directed I/O is
handled by program-class subroutines, so your routines should not do any
language-directed I/O. For further details on these subjects, refer to Chapter 5.

Note As of Rev. 23.0, PRIMOS does not provide explicit means to allocate and link to a
common area dynamically. The technique given here implicitly provides much of the
same functionality for per-process shared data. The subroutine or subroutines that access
the data area act as a gateway for EPFs that need to use the data.

Using Shared Read/Write Common Areas

Registered EPFs give you the ability to create shared read/write common areas.
Since shared areas are not reinitialized for each user, they can be used to share
data among several user processes.
The technique is much like the one used to share data among programs using a
process-class library EPF, but in this case, you can use either a library EPF or a
program EPF.

1. Write a routine or routines that manipulate data in a common area data
structure.

2. Use BIND to build a registered EPF with these routines. Use the -SHARE
and -ACCESS options of the ALLOCATE subcommand to define the data
structure as a shared read/write common area. The section Creating a
Shared Common Area With BIND, below, shows you how to do this.

The simplest approach is to create a registered library EPF much like the
process-class dynamic library EPF described in the previous section. You could,
for example, write one routine to update the data structure and another to return
its contents. You can test such a library as a process-classdynamic library EPF
that shares data among programs and then rebuild it as a registered library EPF

7-2 Second Edition

Shared Data

to share data among processes. The program examples below show a library
built and tested in this way.
If you create a registered program EPF, you can write an interface that allows
users to read and write to the common area. However, you may find a program
EPF more difficult to test and debug than a library EPF. A more flexible
technique would be to put the user interface in a program EPF and the shared
data manipulation routines in a registered library EPF.

Again, you must write code that deals with simultaneous attempts to update the
common area. See the section Providing for Simultaneous Updates, below, for
information on this topic.

Creating Shared Common Areas With BIND
You can have BIND allocate a shared read/write common data area using the
-SHARE and -ACCESS options of the ALLOCATE subcommand. The format
is

ALLOCATE symbol jiame size -SHARE -ACCESS READ/WRITE

The arguments are

symbolname The name by which the shared data
structure is referenced in the EPF.

size A decimal number that gives the size of
the data area in 16-bit halfwords.

-SHARE Tells BIND to place the data area in a
shared segment.

-ACCESS READ/WRITE Sets read/write access to the shared
area.

You must give the ALLOCATE subcommand before you load any routines that
reference the common data area.
Debugging an EPF that shares data in this way can be difficult, since you cannot
create a shared read/write common area in a dynamic EPF. If you are creating a
library EPF, one possibility is to create a process-class dynamic library EPF first,
as described in the previous section. You can test the library's ability to share
data among programs within a single process. You can then rebuild the library
as a registered EPF, allocating the shared data structure as a shared read/write
common area. You can then test its ability to share data among processes.

Second Edition 7-3

Advanced Programmer's Guide I: BIND and EPFs

Using Static Shared Data

Allocating static segments for shared data is inconsistent with the dynamic
approach encouraged by EPFs and is not recommended when other techniques
are available. The SYMBOL subcommand of BIND does, however, provide you
with the means to build an EPF that addresses statically allocated data.
The technique is as follows:

1. Allocate the appropriate static memory for your data object.

2. Initialize the data area either at system coldstart or at user login.
3. When using BIND to build an EPF that addresses the shared data area, use

the SYMBOL subcommand to specify the address of the data area.

Allocating Space
You allocate space for the shared data object in static segments. For data that is
to be shared among programs within a process, you allocate the segments from
per-user static memory (segment numbers between 4000 and the first dynamic
segment). Remember that PRIMOS does not manage access to this memory for
you. You must take care to see that your data area does not conflict with
memory used by other programs.
For data that is to be shared among processes, you use shared static segments.
Consult with the System Administrator to find out which segments are available
for sharing. The System Administrator must then make the shared segments
available at system coldstart using the SHARE command.

Initializing the Data
You must explicitly initialize the shared data area because PRIMOS does not
initialize static segments when initializing an EPF.
For data in per-user static segments, you must be sure that each user's data area
is initialized before its first use during a terminal session. The simplest way to
do this is to write an initialization program that writes the correct initial values to
the shared data area. Have each user's LOGIN.CPL invoke this initialization
program so that it is run once at each login or command environment
initialization.
For data in shared static segments, perform the initialization at cold start when
the segments are shared. You can do this in two ways:

• Run an initialization program at cold start. The System Administrator or
PRIMOS.COMI should invoke the initialization program immediately after
the SHARE command.

7-4 Second Edition

Shared Data

• Create a static-mode memory image with SEG and load it with the SHARE
command. Consult the SEG and LOAD Reference Guide for information
about how to do this.

Using the SYMBOL Subcommand
When you use BIND to build an EPF that references the shared data area, you
must use the SYMBOL subcommand to specify the area's address. The format
is

SYMBOL symbolname definition [size]

The arguments are

symbolname The name by which the data area is referenced in your program
definition The address of the data area in segment numberl offset format
size An optional decimal number that give the size of the data area in

16-bit halfwords

After you give the SYMBOL subcommand, all references in your program to
symbolname refer to the data area.
When you use static segments to share data you should be aware of two
important restrictions:

• You are responsible for managing and initializing the static memory. Other
programs may overwrite your data area.

• You must use BIND to rebuild your EPF any time the shared data area
address is changed. You must provide the new address with the SYMBOL
subcommand. This makes EPFs that address static segments less easy to
maintain than EPFs that do not.

Because of these restrictions, you should avoid using static segments to share
data among EPFs if possible.

Also remember that any code that updates a shared data area must be able to
handle concurrent updates. The following section discusses this issue.

Providing for Concurrent Updates
Whenever more than one program or process can reference shared data
concurrently, you must consider the possibility that one access may interfere
with another. If you use shared data structures that you have allocated in EPFs

Second Edition 7-5

Advanced Programmer's Guide I: BIND and EPFs

or static segments, your code must be designed to handle concurrent attempts to
access the data.
In the case of multiple processes, the problem can occur during process
exchange. If one process is interrupted while accessing the shared data, another
process may also access the shared data while the first is waiting to resume
execution. When you have either multiple processes or multiple programs
within a single process, a similar problem can occur when one program is
suspended (because you typed CONTROL-P, for example). If you suspend a
program while it is accessing shared data, the data may be accessed by another
program while the first is suspended. If you later restart the first program, the
shared data may now be corrupted.
It can be difficult to spot potential concurrency problems in source code.
Individual program statements are often interruptible. For example, the
statement

item = item + 1

might well generate code that could be interrupted between reading the value of
item and incrementing its value. If such an interruption occurs, and another
program subsequently alters the value of item, the first program will still write
the incremented value of the old item when it resumes execution. This may not
be what your software expects. Such problems can be a difficult to diagnose,
since they may occur only irregularly and may be very difficult to reproduce.
Writing code that avoids these problems is a topic beyond the scope of this book.
This section indicates some of the resources available in PRIMOS for dealing
with concurrent updates and suggests some solutions.

Atomic Update Routines in PMA
You can write PMA subroutines that update individual shared locations
atomically. Such routines are coded so that they can check the validity of the
shared location and update it in a way that is immune to interruption. The
following PMA routines show how to use the STAC instruction to atomically
update the contents of memory locations holding 16-bit integer data.
The first routine, COND_STORE.PMA, atomically attempts to replace the old
contents of 116-bit memory location with a new value. The function return
value indicates whether the atomic update was successful. The routine is called
with three halfword integers, and returns as its function value a halfword integer.
In PL/I, its calling sequence is

DCL COND STORE ENTRY (FIXED BIN(15),FIXED BIN(15),
FIXED BIN(15))
RETURNS (FIXED BIN(15));

condjstorejok - CONDSTORE {destination, new_value,old_value);

7-6 Second Edition

Shared Data

If condstoreok is 1, then the value of destination has been successfully
changed from old_value to new value. Otherwise, condstoreok is 0, and no
change to destination has taken place.

SEG SPLIT_LINKAGE

* The SPLIT_LINKAGE keyword allows the subroutine to
* share linkage when it is built as a registered EPF

RLIT
SYML

*
SUBR COND_STORE,ECB

*
LINK

ECB ECB COND_STORE,,WHERE,3
PROC

*
COND_STORE EQU *

ARGT
*

LDA OLD,*
TAB
LDA NEW,*
STAC WHERE,*
BCEQ OK
CRA

*
PRTN

*
O K L T

PRTN
*

DYNM WHERE(3),NEW(3),OLD(3)
*

END

The second routine, INCREMENT.PMA, atomically increments the value of a
16-bit memory location by 1 and returns the new value. The PL/I calling
sequence is as follows:

DCL INCREMENT ENTRY (FIXED BIN(15))
RETURNS (FIXED BIN(15));

new_value = INCREMENT {old_value);

Second Edition 7-7

Advanced Programmer's Guide I: BIND and EPFs

The PMA source is as follows:

SEG SPLIT_LINKAGE
RLIT
SYML

*
SUBR INCREMENT,ECB

*
LINK

ECB ECB INCREMENT, , VARIABLE,1
PROC

*
INCREMENT EQU *

ARGT
*
TRY_AGAIN LDA VARIABLE,*

TAB
A1A
STAC VARIABLE,*
BCNE TRY_AGAIN

*
PRTN

*
DYNM VARIABLE(3)

*
END

You can change the INCREMENT routine into a DECREMENT routine by
changing the A1A instruction to SIA.
By themselves, these routines only update a single 16-bit memory location at a
time. You can rewrite the routines to update 32-bit locations, but you can also
use the 16-bit routines to protect arbitrarily large data areas by having the
routines set access flags on the data. The TUBESJLIB.C example shows you
how to use the COND_STORE routine in this way.

Other Techniques
You may be able to use other PRIMOS facilities to protect shared data areas
from simultaneous access or even to avoid using shared memory altogether.
Synchronizers and Semaphores: You may be able to use event
synchronizers or semaphores to coordinate access to shared data resources. For
detailed information on semaphores, see Subroutines Reference III: Operating
System. For detailed information on event synchronizers, see Subroutines
Reference V: Event Synchronization.
Using the File System and Global Variables: You can avoid many data
sharing problems by using the file system or global variables. You can use the

7-8 Second Edition

Shared Data

file system to share data of all types both among programs and among processes.
You can use global variables to share small amounts of character data among
programs within a process. In both cases, PRIMOS handles allocation and
updating for you. The Advanced Programmer's Guide II: File System includes a
detailed discussion of interprocess communication via the file system.
InterServer Communication Facility: ISC provides a means of passing
both large and small amounts of string data between two processes.
Programming with ISC requires calls to many subroutines, but relieves you of
the necessity of managing shared static memory and concurrent updates. If your
programs need to pass blocks of string data, consider using ISC. You can find a
complete description of ISC in Subroutines Reference V: Event Synchronization.

A Data Sharing Example

The following C language program, TUBES_LIB.C, is a simple demonstration
of the EPF data sharing techniques discussed in this chapter. When built as a
registered EPF library, TUBES_LIB provides routines for passing character data
between processes. Data are passed through a set of shared data structures called
tubes. The array of tubes is allocated as a shared read/write common area when
the program is built as a registered EPF. Library entrypoints provide a way for
programs to open, close, read from, and write to tubes.

/* tubes_lib.c is a library of routines that can be used to manage tubes. */
/* Tubes are shared buffers that can be used to pass character data */
/* between user processes, tubes J.ib.c provides an orderly way for a */
/* process to acquire the number of a free tube and to write to or read */
/ * f r o m i t . T h e f o l l o w i n g e n t r y p o i n t s a r e a v a i l a b l e : * /
/ * * /
/ * o p e n _ t u b e R e t u r n s t h e n u m b e r o f a f r e e t u b e * /
/ * c l o s e _ t u b e M a r k s a s p e c i fi e d t u b e a s f r e e * /
/ * w r i t e _ t o _ t u b e W r i t e s o n e c h a r a c t e r t o a s p e c i fi e d t u b e * /
/ * r e a d _ t u b e R e t u r n s o n e c h a r a c t e r f r o m a s p e c i fi e d t u b e * /
/ * * /
/* Note that the library does not provide any means to control access */
/* to tubes, to prevent processes from reading and writing to closed */
/* tubes, or to prevent processes from closing tubes still in use. The */
/ * ca l l i ng p rocesses a re respons ib le fo r p reven t ing such confl ic t s . * /

i nc lude " s td io .h "

fdefine NTUBES 16 /* number of tubes allocated on system */
#define TSIZE 128 /* length of tube buffer */
#define FREE 0 /* tube not currently in use */
#define USED 1 /* tube in use */
#define NONEFREE -1 /* no tubes currently available */
#define OK 1

Second Edition 7-9

Advanced Programmer's Guide I: BIND and EPFs

#define FAILED 0

/* THE ARRAY OF TUBE STRUCTURES */
/* link as shared read-write */

struct tube_blk{
short in_use; /* equals USED if tube is in use, else FREE */
short c_count; /* number of chars in tube buffer */
char *bot_ptr; /* first element in tube buffer */
char *top_jptr; /* last element */
char *read_jptr; /* read from here */
char *write_ptr; /* write to here */
char tube[TSIZE]; /*tube buffer itself */

} tube_table[NTUBES];

/* ROUTINE TO INITIALIZE THE SHARED ARRAY */
/* this is run at registration time as an init_entry */

in t in i t_tubes(){

int count;

for (count = 0; count < NTUBES ; count++) close_tube(count);
return(OK);

}

/* CALL TO CLOSE A TUBE */
/* closes a tube whether it is open or not */

int close_tube(tube_num)
int tube_num;
{

extern struct tube_blk tube_table[];

tube_table[tube_num] .c_count = 0; /* tube is empty */
tube_table[tube_num].bot_ptr = tube_table[tube_num].tube;
tube_table[tube_num].top_ptr = &(tube_table[tube_num].tube[TSIZE-1]);
tube_table [tube_num] .read__ptr = tube_table [tube__num] .top_ptr;
tube_table[tube_num].write_ptr = tube_table[tube_num].top_jptr;
tube_table[tube_num] .in_use = FREE; /* not in use, do this last */
return(OK);

}

/* CALL TO OPEN A TUBE */
/* returns either the tube number or NONEFREE if no tubes are available */

int open_tube(){

/* updates the in_use flag conditionally to prevent more than */
/ * o n e p r o c e s s g r a b b i n g t h e s a m e t u b e . * /

7-10 Second Edition

Shared Data

fortran short constoreO; /* the atomic update routine */
extern s t ruct tube_blk tube_table[] ;

int tube_num; /* tubes numbered from 0 to PNUM -1 */

tube_num = 0; /* try first tube */
while (tube_num < NTUBES){

if (tube_table[tube_num].in_use == FREE){ /* currently free */
i f (cons tore(tube_tab le [tube_num] . in_use,USED,FREE)) {

return(tube_nurn); /* return the tube number if atomic */
} / * u p d a t e w a s s u c c e s s f u l * /

}
t u b e _ n u m + + ; / * e l s e t r y a n o t h e r t u b e * /

}
r e t u r n (N O N E F R E E) ; / * n o f r e e t u b e s t h i s t i m e t h r o u g h * /

/* CALL TO WRITE A CHARACTER TO A TUBE */
/* updates the character count atomically to allow */
/ * s i m u l t a n e o u s r e a d s a n d w r i t e s * /

int write_to_tube (c, tube_num)
char c;
int tube_num;
{

extern s t ruct tube_blk tube_table[] ;
fortran short increment(); /* atomic increment routine */

while(tube_table[tube_num].c_count >= TSIZE); /* wait until there's room */

/* or we could return a value that indicates a full tube and let the */
/* calling application decide whether to wait */

* (tube_tab le [tube_num] .wr i te_p t r) = c ;
(tube_table[tube_num].write_ptr)++; /* move pointer and wrap if needed */
if (tube_table [tube_num] .write_ptr > tube_table [tube_num] .top__ptr)

tube_ tab le [tube_num] .wr i te_p t r = tube_ tab le [tube_num] .bo t_p t r ;
increment(tube_table[tube_num].c_count); /* atomical ly update char count */

}

/* CALL TO READ A CHARACTER FROM A TUBE */
/* updates the character count atomically to allow */
/ * s i m u l t a n e o u s r e a d s a n d w r i t e s * /

char read_tube(tube_num)
int tube__num;
{

ex tern s t ruc t tube jo lk tube_tab le [] ;
fortran short decrement(); /* atomic decrement routine */
char c;

Second Edition 7-11

Advanced Programmer's Guide I: BIND and EPFs

while(tube_table[tube_numl.c_count == 0); /* wait for chars to read */
/* or we could return a value to indicate that there are no characters */
/* to read and let the calling program decide whether to wait. */

c = *(tube_table[tube_num]. read_ptr) ;
(tube_table[tube_num].read_ptr)++;

/* increment pointer and wrap if needed */
if (tube_table[tube_num].read_jptr > tube_table[tube_num].topjptr)

tube_table[tube_num].read_ptr = tube_table[tube_num].bot_ptr;
decrement(tube_table[tube_num].c_count) ;

/* atomic decrement of char_count */
return c;

Note the use of atomic updates by TUBESJLIB.C:

• The tube structure uses the short integer variable inuse to indicate
whether a given tube has already been selected for use. The opentube
subroutine uses the COND_STORE routine to update this variable
atomically when searching for a tube that is not in use.

• Reads and writes use the INCREMENT and DECREMENT subroutines to
update cjcount atomically. This prevents the generation of invalid values
if read tube and write Jube are interrupted.

The inuse variable is a simple example of how a flag can protect a data
structure from simultaneous access. As long as each process that writes to a
tube first calls open tube and uses the tube number returned, simultaneous writes
cannot occur.
The simultaneous access protection implemented in TUBES_LIB.C is the
minimum required by cooperating processes to maintain the integrity of the
shared data structures. If processes fail to cooperate, the contents of the tube
structures can become corrupted. If processes don't call open tubes, for
example, there is no means to prevent them from reading or writing closed tubes,
writing simultaneously to the same tube, and so on. Note also that there is
nothing to prevent a tube from being closed while a write or read is occurring.
Reading and writing processes therefore need to establish a clear protocol for
terminating communication before closing a tube.
Additional checks can be added to the library to relieve the calling processes of
these responsibilities. Ultimately, however, the security of shared read/write data
structures like tubes depends on cooperation by user processes. Because shared
read/write data areas reside in shared segments, user programs can always get
access to them and intentionally or unintentionally change their contents.
B u 11 d I ng TU B ES_LI B: The recommended procedure for building and testing
a registered library EPF that shares data is to build it first as a process-class
dynamic library EPF. The dynamic library EPF can then be tested by calling it
from several programs within a single process. After such testing the library can

7-12 Second Edition

Shared Data

be rebuilt as a registered EPF and subjected to multiple process testing. The
BIND sequence to build TUBES_LIB as a process-class dynamic library EPF is

OK, BIND
[BIND Rev. T3.0-23.0 (c) 1990, Prime Computer, Inc.]
: LIBMODE -PROCESS
Library is process-class.
: ENTRYNAME -ALL
All successive entrypoints will be added to the
en t rypo in t tab le
: LO TUBES_LIB
: ENTRYNAME -NONE
Successive entrypoints will not be added to the
en t r ypo in t t ab le
: LO COND_STORE
: LO INCREMENT
: LO DECREMENT
BIND COMPLETE
: FILE
OK,

After testing the dynamic version, you can then rebuild the library as a registered
EPF.

OK, BIND
[BIND Rev. T3.0-23.0 (c) 1990, Prime Computer, Inc.]
: LIBMODE -PROCESS -REGISTER
Library is regis terable process-c lass.
: ALLOCATE TUBE_TABLE 2000 -SHARE -ACCESS READ/WRITE
New symbol PIPE_TABLE is 2000(003720) words long
The area is shared and its access type is read/write
: ENTRYNAME -ALL
All successive entrypoints will be added to the
en t r ypo in t t ab le
: LO TUBES_LIB
"TUBE_TABLE" :smaller redefinition of common.

: ENTRYNAME -NONE
Successive entrypoints will not be added to the
en t r ypo in t t ab le

LO COND_STORE
LO INCREMENT
LO DECREMENT

BIND COMPLETE
: INIT_ENTRY INIT_TUBES
Init Program ECB is INIT_TUBES at -0004/004130
: FILE
OK,

Second Edition 7-13

Advanced Programmer's Guide I: BIND and EPFs

Note the important differences in the build sequence:

• The -REGISTER option declares the library as registrable.

• The ALLOCATE subcommand is used to reserve shared read/write space
for the tubes array.

• The INIT_ENTRY subcommand causes the INIT_TUBES subroutine to be
run at registration time. This initializes the tubes array once for all
processes.

7-14 Second Edition

Maps and Addresses
8

PRIMOS provides a variety of information that you can use to locate and
examine EPFs currently mapped to memory. This information can be helpful
when you debug a dynamic EPF. The basic procedure is as follows:

• Use the LIST_EPF command to find the actual addresses of the
procedure, linkage/data, and other areas of the EPF.

• Use the map generated with the MAP subcommand of BIND to find the
imaginary addresses of specific items in the EPF, such as the Entry Control
Block (ECB), program base, and linkage base of each procedure.

• Correlate these imaginary addresses with actual addresses.
• Examine the EPF in memory using one of the Prime debuggers, VSPD and

ISPD.
• Use the DUMP_STACK command to find the locations of your EPF's

stack frames.

Imaginary and Actual Addresses
Before you begin, you need to understand how PRIMOS correlates imaginary
and actual addresses. Recall that EPFs are built with imaginary addresses so that
PRIMOS can locate them in any available memory space. Both imaginary and
actual addresses have the form

segmentjiumberI offset

You can identify imaginary addresses because they have signed segment
numbers. For example,

Second Edition 8-1

Advanced Programmer's Guide I: BIND and EPFs

-0002/10472
+0000/77160
^1/1672
+6/1000

Actual addresses have unsigned segment numbers.

4376/15433
4377(0)/100123

Note Both imaginary and actual address segment numbers may be displayed with or without
leading zeros. Actual addresses may also be displayed with ring numbers in parentheses
following the segment number. In the last example, the ring number 0 is shown. The
ring numbers are not relevant to the current discussion.

Signed Segment Numbers
BIND chooses the signs of imaginary segment numbers as follows:

• BIND assigns positive segment numbers to pure procedure segments in
dynamic EPFs.

• BIND assigns negative segment numbers to linkage, data, and impure
procedure areas in both registered EPFs and dynamic EPFs.

• BUND assigns negative segment numbers to shared procedure areas in
registered EPFs.

LIST_EPF Command
The LIST_EPF command shows the names of all EPFs currently mapped to your
address space. Use the -SEGMENTS option to get a listing that shows the
actual address of each imaginary segment.

OK, LIST_EPF -SEGMENTS

4 Process-Class Library EPFs.

(not active)
<TPLAB>LIBRARIES*>PL1_SYSTEM_LIBRARY.RUN

1 procedure segment: +0:4233
2 l i n k a g e a r e a s : (n o t a l l o c a t e d)
(a c t i v e)

<TPLAB>LIBRARIES*>SYSTEM_LIB$PRC.RUN
1 procedure segment: +0:4301

8-2 Second Edition

Maps and Addresses

-2 :4307 (3) / 1117021 linkage area:
(not active)
<TPLAB>LIBRARIES*>TRANS LIB$PRC.RUN

1 procedure segment:
1 linkage area:

(a c t i v e)
1 procedure segment:
3 linkage areas:

- 4 : 3 7 7 6 (0) / 0

+0:4304
(not a l located)

TUBES_LIB.RUN
+0:7777
- 2 : 3 7 7 7 (0) / 2 2 0

-6 :6023 (0)70

6 Program-Class Library EPFs

(not active)
4 procedure segments:

<TPLAB>LIBRARIES*>CC_LIBRARY.RUN
+ 0 : 4 1 7 4 + 2 : 4 1 7 3
+ 4 : 4 1 7 2 + 6 : 4 1 7 1
-2 :4307 (3) /13702

<TPLAB>LIBRARIES *>CC_LM.RUN
+0:4226

(not a l located)

2 linkage areas:
- 4 : 4 1 7 0 (0) / 0
(not active)

1 procedure segment:
1 linkage area:

(not active)
<TPLAB>LIBRARIES*>FTN_LIBRARY.RUN

1 procedure segment: +0:4251
1 l i n k a g e a r e a : (n o t a l l o c a t e d)

(not active)
<TPLAB>LIBRARIES *>PL1_LIBRARY.RUN

2 procedure segments: +0:4235
2 l i n k a g e a r e a s : (n o t a l l o c a t e d)

(not active)
<TPLAB>LIBRARIES*>PRIMOS_LIBRARY.RUN

1 procedure segment: +0:4275
1 l i n k a g e a r e a : (n o t a l l o c a t e d)

(not active)
<TPLAB>LIBRARIES*>SYSTEM_LIB$PRG.RUN

1 procedure segment: +0:4302
1 l i n k a g e a r e a : (n o t a l l o c a t e d)

+2:4234

2 Program EPFs.

(not active)
1 procedure segment
1 linkage area:

(not active)
1 procedure segment
1 linkage area:

<TPLAB>CMDNC0>TERM.RUN
+0:4306
-2 :4307 (3) /3620

<TPUSR3>WRITER>MY_PROG.RUN
+0:4305
- 2 : 4 3 0 7 (3) / 4 0 1 4

Second Edition 8-3

Advanced Programmer's Guide I: BIND and EPFs

The listing shows the actual locations of imaginary segments in two formats:
• Pure procedure segments are displayed as

+imaginary_segjium:actual_seg_num

• Linkage/data, shared procedure, and impure procedure segments are
displayed as

-imaginary_segjium:actual_seg_numloffset

Pure procedure segment addresses are shown without offsets because they are
mapped so that the beginning of an imaginary segment corresponds exactly to
the beginning of an actual segment. PRIMOS maps only one of these segments
to each actual segment. For example, in the above listing, imaginary segment 0
of the MY_PROG.RUN is mapped to actual segment 4305.
Linkage/data segments are shown with offsets because PRIMOS can map them
anywhere within an actual segment. PRIMOS can map more than one of these
imaginary segments to a single actual segment. For example, imaginary segment
-2 of MY_PROG is mapped so that it begins at offset 4014 of actual segment
4307.
Impure and shared procedure segments are also shown with offsets, but the
offsets are 0 since PRIMOS always maps them to begin at the beginning of an
actual segment. For example, imaginary segment -4 (the shared procedure
segment) of the registered library EPF named TUBES_LIB begins at offset 0 of
segment 3776.

Note TUBES_LIB is shown in the display without a pathname. Dynamic EPFs are displayed
by LIST.EPF with full pathnames. Registered EPFs are displayed by LISTJBPF without
pathnames.

The BIND Map

The MAP subcommand of BIND generates an imaginary memory map of an
EPF showing the imaginary addresses of several structures for each procedure.
The memory maps for dynamic EPFs and registrable EPFs differ in their
Segment fields. The segment types for a dynamic EPF appear as follows:

S e g m e n t T y p e L o w H i g h T o p
-0002 DATA 000000 000117 000332
+0000 PROC 001000 001146 001150

8-4 Second Edition

Maps and Addresses

The Segment fields for the same program as a registrable EPF appear as follows:

S e g m e n t T y p e L o w H i g h T o p
- 0 0 0 4 D A T A 0 0 0 0 0 0 0 0 0 0 5 1 0 0 0 2 6 4
-0002 SHARED PROC 001000 001172 001174
+ 0 0 0 0 P R O C 1 7 7 7 7 7 0 0 0 0 0 0 0 0 1 0 0 0 E M P T Y

In a registrable EPF, pure procedure code and shareable linkage are placed in a
separate shared data segment (SHARED PROC). The DATA segment contains
static data and per-user linkage. In the above example, all procedure code and
most linkage are shared, so the DATA segment is smaller than the corresponding
one in the dynamic EPF, and the unshared PROC segment (for impure procedure
code) is unused.
The following example shows the map of the dynamic EPF named
MY_PROG.RUN:

M a p o f M Y _ P R O G (M a p V e r s i o n 1)

MAIN PROCEDURE: GG$MAIN
START ECB: -0002/000017

S e g m e n t T y p e L o w H i g h T o p
- 0 0 0 2 D A T A 0 0 0 0 0 0 0 0 0 1 2 6 0 0 0 1 3 0
+ 0 0 0 0 P R O C 0 0 1 0 0 0 0 0 1 2 0 7 0 0 1 2 1 0

Base Area: +0000 000100 000100 000777 000777

PROCEDURES:
Name ECB add ress I n i t i a l PB% S tack s i ze L ink s i ze I n i t i a l LB%
G G $ M A I N - 0 0 0 2 / 0 0 0 0 1 7 + 0 0 0 0 / 0 0 1 0 0 0 0 0 0 0 4 6 0 0 0 1 3 0 - 0 0 0 2 / 1 7 7 4 0 0
S U B R 1 - 0 0 0 2 / 0 0 0 0 4 7 + 0 0 0 0 / 0 0 1 0 1 3 0 0 0 0 4 6 0 0 0 1 3 0 - 0 0 0 2 / 1 7 7 4 0 0
S U B R 2 - 0 0 0 2 / 0 0 0 0 7 7 + 0 0 0 0 / 0 0 1 0 2 7 0 0 0 0 4 6 0 0 0 1 3 0 - 0 0 0 2 / 1 7 7 4 0 0

DYNAMIC LINKS:
CC$PRINTF

+0000/001202

COMMON AREAS:

OTHER SYMBOLS:
CC$COP +0000/001042

UNDEFINED SYMBOLS:

For the procedure SUBR1, for example, the ECB is located at offset 000047 of
imaginary segment -0002; the procedure base is located at offset 001013 of

Second Edition 8-5

Advanced Programmer's Guide I: BIND and EPFs

imaginary segment +0000; and the link base is located at offset 177400 of
imaginary segment -0002. All addresses are in octal numbers.

From Imaginary to Actual Addresses

After MY_PROG is mapped to your address space, you can combine
information given in the BIND map with the information displayed by the
LISTJEPF command to find the actual location of each structure. For example,
suppose that LISTJBPF -SEGMENTS displays the following information about
MY_PROG:

(active) <USRDSK>USER_PROGS>MY_PROG.RUN
1 procedure segment: +0:4562
1 l i n k a g e a r e a : - 2 : 4 6 2 5 (3) / 2 7 3 4

You can find the locations of various structures for SUBR1 as described in the
following paragraph.

Determining the Procedure Base Address
The LIST_EPF display shows that segment +0 is mapped to actual segment
4562. No offset is shown because imaginary segment +0 is a procedure segment
that is mapped to begin at the beginning of an actual segment. Therefore, the
offset of SUBR1 's procedure base in the actual segment is the same as the offset
in the imaginary segment (001013). The actual address of SUBRl's procedure
base is therefore 4562/1013.

Determining ECB Addresses
The BIND map shows the imaginary address of SUBR1 's ECB as offset 000047
of imaginary segment -0002. The LIST_EPF display shows that imaginary
segment -2 is mapped to offset 2734 of actual segment 4625. Since segment -2
is a linkage/data segment, PRIMOS need not map it to begin at the beginning of
an actual segment.
To calculate the offset portion of the actual address, you need to add the ECB's
offset within the imaginary segment (47) to the offset of the imaginary segment
within the actual segment (2734). This gives an actual offset for the ECB
address of 3003, so the actual address is 4377/3003.

8-6 Second Edition

Maps and Addresses

Note When doing arithmetic with offsets, remember that they are octal numbers. Note that the
highest offset number in a segment is 177777 and that there is no carry into the segment
number. For example, 177777 + 1 = OOOOOO. The next section shows how you can have
one of the Prime symbolic debuggers do the arithmetic for you when you are examining
an EPF in memory.

Determining the Link Frame Address
To calculate the address of the link frame, you need to remember that the address
placed in the link base register is always 400 less that the actual address of the
link frame. The address shown in the column headed initial lb% in the
BIND map is the imaginary equivalent of the value placed in the link base
register.
You can calculate the actual address placed in the link base register just as you
calculate the address of an ECB. To calculate the offset portion, you add the
offset within the imaginary segment to the offset of the imaginary segment
within the actual segment. In this case, you add 177400 and 2734 to get an
actual offset of 2334 (following the offset arithmetic rules given above).
Therefore, the actual address placed in the link base register is 4625/2334.
To get the actual location of the link frame in memory, add 400 to the offset
calculated above. This gives an actual address for the link frame of 4625/2734.
Note that in this case the calculation is trivial since the link base for the
procedure is at the beginning of the linkage segment (177400 + 400 = 0). This is
frequently the case, so you can often avoid doing any calculations and simply
read the location from the LISTJEPF display.

Examining EPFs in Memory
You can examine a dynamic EPF in memory using one of the Prime interactive
debugging utilities, VPSD and IPSD. VPSD handles V-mode code and IPSD
handles I-mode code. This section briefly shows you how to use VPSD. The
IPSD subcommands are nearly identical. The Assembly Language
Programmer's Guide gives complete information about both debuggers.

Examining Mapped EPFs
To examine a dynamic EPF that is suspended or that has run to completion but
remains mapped, invoke the debugger with the VPSD command.
When you use VPSD to examine a program already in memory, you can use the
information provided by the LISTJEPF command and the BIND map to locate
EPF structures in memory. To examine an object at a given imaginary location,

Second Edition 8-7

Advanced Programmer's Guide I: BIND and EPFs

you need three pieces of information from the imaginary and actual addresses of
the object:

• The actual segment number
• The offset of the imaginary segment within the actual segment (relocation

offset)
• The imaginary offset

You can have VPSD display the location using the following subcommand
sequence:

SN actual segmentjiumber
RE relocation offset
A > imaginary j)ffset

For example, the BIND map shows that the ECB of SUBR_1 begins at
imaginary address -0002/000047. The LIST_EPF display shows that imaginary
segment -2 is mapped to actual address 4625/2734, so you can access the first
location of the ECB as follows:

OK, VPSD

[VPSD Rev.Tl.1-21.0 Copyright(c)Prime Computer,Inc. 1988]

$:0 tells VPSD to display locations in octal format

$ S N 4 6 2 5 s e t t h e a c t u a l s e g m e n t n u m b e r

$ R E 2 7 3 4 s e t t h e r e l o c a t i o n o f f s e t

$ A > 4 7 a c c e s s i m a g i n a r y o f f s e t
4377/>47 4562 VPSD shows the actual address

followed by its contents
(>47 means the relocation offset + 47)

For imaginary addresses with positive segment numbers, the relocation offset is
0, so you can eliminate the RE subcommand. For example, the first executable
instruction of SUBR1 is at imaginary address +0000/001013 and segment +0 is
mapped to actual segment 4562. You can then examine the code at this address
as follows:

$: S t e l l s V P S D t o d i s p l a y l o c a t i o n s a s
symbolic instructions

$SN 4562

$A 1013
4562/ 1013 EAL% LB%+ 467 You press Return several

8-8 Second Edition

Maps and Addresses

4562/ 1015 STL% SB%+ 42 times to display a number
4562/ 1017 PCL% LB%+ 411,* of locations
4562/ 1021 AP SB%+ 42,SL

You can also use VPSD's virtual base registers to hold values for the link base,
procedure base, stack base, and XB . You can then address locations relative to
these values without doing any further arithmetic. To set the LB register, for
example, use the subcommand format:

LB actual segment relocation offset+imaginary offset

You can set the other virtual registers in a similar manner.
For example, suppose you wish to examine the Indirect Pointer addressed by the
PCL instruction at offset 1017 shown above. Since the imaginary address of
SUBRJ 's LB is -0002/177400, the sequence is as follows:

$j_0

$ L B 4 6 2 5 2 7 3 4 + 1 7 7 4 0 0 S e t t h e v i r t u a l l i n k a g e
base reg is ter

$ A L B % + 4 1 1 U s e t h e r e l a t i v e a d d r e s s s h o w n
in the PCL instruction

4625/ 2745 104562
4625/ 2746 1202

In this case, the display shows a faulted IP (high-order bit set) that points to a
dynt in the procedure segment.

Using the DUMP_STACK Command
Use the DUMP_STACK command to display the addresses of stack frames
allocated for your program. The display may show many frames, so
identification of the desired frame may not be straightforward. There are two
ways to identify the proper stack frame:

• By the Owner= label, if the procedure you are attempting to locate is
written in PL/I, F77, VRPG, or Pascal.

• By comparing the (LB=) field to the value calculated using the
LIST_EPF display and the BIND map. This works for procedures written
in any language.

In the first case, the name of the owning procedure appears in the
DUMP_STACK display itself.

Second Edition 8-9

Advanced Programmer's Guide I: BIND and EPFs

In the second case, you need to do some address calculations. First, you
determine the Initial LB% for the procedure, as explained above. Then you look
for the corresponding stack frame in a DUMP_STACK display. If it isn't there,
the procedure you are searching for is not active, and is therefore not on the
stack.

Locating the Stack Frame for a Procedure
Here is a sample display from the DUMP_STACK command. It shows a
running program EPF that was interrupted by pressing CONTROL-P:

OK, DUMP_STACK
Backward trace of stack from frame 7 at 6002(3)/4046.

STACK SEGMENT IS 6002.

(7) 004046: CONDITION FRAME for "QUIT$"; returns to 13(3)/77622.
Condition raised at 4257 (3)/1327; LB= 4377 (0)/44424, Keys= 004000

(8) 003726: FAULT FRAME; fault type "RXM" (0)
Fault returns to 4257 (3)/1327; LB= 4377 (0)/44424, keys= 004000
Fault code= 000000, fault addr= 4257(3)/130004.
Registers at time of fault:

Save Mask= 007755; XB= 4257(3)/1042
G R O 6 0 0 1 3 2 4 6 6 7 1 4 0 0 2 6 2 4 6 6 7 G R l 0 0 0

L , G R 2 0 1 2 1 2 E , G R 3 3 1 0 1 1 7 6 6 6 2 0 1 1 7 6 6
G R 4 0 0 0 Y , G R 5 0 1 7 4 0 5 2 1 7 4 0 5 2
G R 6 3 4 6 6 6 6 0 0 2 7 1 5 4 6 6 0 0 2 X , G R 7 0 1 0 6 1 1 0 6 1

F A R O 4 3 7 5 (3) / 1 2 F L R O 1 3 F R O 2 . 4 1 0 4 1 2 7 4 E - 3 9
FA R 1 4 3 7 7 (3) / 1 2 4 F L R l 3 4 6 6 0 0 2 F R I 3 . 7 5 0 8 9 8 9 3 E 5 4 3

(9) 003710: Owner= (LB= 4377(0)/44424).
Called from 4234 (3)/1055; returns to 4234(3)/1061.

(10) 003616: Owner= SUBR1 (LB= 4377(0)/177460).
Called from 41 (3)/125336; returns to 41(3)/125340 .

(11) 003462: Owner= (LB= 41 (0)/125010) .
Called from 13(3)/17354; returns to 13(3)/17376.
Proceed to this activation is prohibited.

(12) 002220: Owner= (LB= 13 (0)/20256) .
Called from 13(3)/15025; returns to 13(3)/15033.

(13) 001420: Owner= (LB= 13 (0)/20256) .
Called from 13(3)/7224; returns to 13(3)/7236.

(14) 000640: Owner= (LB= 13 (0)/11206) .
Called from 13(3)/163464; returns to 13(3) /163470.

8-10 Second Edition

Maps and Addresses

(15) 000632: Owner= (LB= 13 (0)/163102) .
Called from 4(0)/163466; returns to 4(0)/0.

OK,

In this example, the stack frames for your program are numbers (9) and (10).
They are easily distinguished because the LB segment numbers are in the private
per-user segment range (4377 in this example), rather than in public shared
PRIMOS segments (41 and 13 in this example). In addition, Frame (10) is easily
identified as belonging to a procedure named SUBR1 because it is a PL/I
procedure that identifies itself by name. The stack frame for SUBR1 is
6002/3616, where 6002 is the stack root (as displayed at the beginning of the
DUMP_STACK display); the stack frame for a PMA subroutine it called is
6002/3710. You pressed CONTROL-P while this PMA subroutine was
executing, signalling the QUITS condition.
In more complicated situations, the stack frames are often not so easy to identify,
so comparison with the LB registers displayed for each frame is helpful.

Multiple Entrypoints With the Same LB
In a situation where more than one entrypoint has the same LB, identification by
LB is insufficient. Here, identification by ECB is required. To do this, examine
the stack frame to determine the address of the calling instruction. Then,
examine the next higher-numbered stack frame to determine the contents of the
SB and LB registers for the calling procedure. Then enter the debugger and
examine the calling instruction to determine the address of the ECB. Often, the
calling instruction is a PCL instruction that makes an indirect reference through
an IP in the link frame (LB-relative). If this is the case, you must also set the
value of LB in the debugger to be the LB for the calling procedure.
Occasionally, the calling instruction is a PCL through an SB-relative IP, in which
case you must set up the SB in the debugger accordingly.
However, if the PCL is XB-relative, tracking down the actual address can be
very difficult because the XB register contents can be changed during the
processing of argument templates (APs) and its contents at the time of the call
are not saved by the PCL mechanism. In this case, your best bet is to backtrack
through the code prior to the PCL to determine how it calculated the address for
XB. Look for an EAXB that is SB-, PB-, or LB-relative, and then reconstruct
the sequence of instructions to determine the actual XB contents used at the time
of the call.
Example: For example, to determine the address of the ECB that corresponds
to the SUBR1 procedure, Frame (10) in the above example, first examine the
display for Frame (10):

(10) 003616: Owner= SUBR1 (LB= 4377 (0)/177460) .
Called from 41(3)/125336; returns to 41 (3)/125340.

Second Edition 8-11

Advanced Programmer's Guide I: BIND and EPFs

This tells you that the instruction that called the SUBR1 procedure is at address
41/125336.
Now look at the next frame, Frame (11):

(11) 003462: Owner= (LB= 41(0)/125010) .
Called from 13(3)/17354; returns to 13(3)/17376.

This tells you that the SB for the calling procedure is 6002/3462 and the LB for
it is 41/125010. Now, enter the debugger, examine the calling instruction, and
track down its IP to the ECB. Once you have the actual ECB address, use
LIST.SEGMENT to show which EPFs have linkage in that segment. Then use
LIST.EPF -SEGMENTS to determine whether there is a match between the
ECB address, the actual address of the linkage for the EPF, and the imaginary
ECB address in the BIND map.

OK, VPSD

$SN 41

$A 125336:S
41/ 125336 PCL% SB%+ 107,* _/
$SB 6002 3462

$A SB%+107:O
6002/ 3571 4377 [press Return to continue]
6002/ 3572 7050 /
$Q
OK, LISTSEGMENT 4377 -NAME

1 Private dynamic segment,
segment access epf

4377 RWX <USRDSK>UNGER>MYLIBRARY.RUN
<SYSDSK>LIBRARIES*>SYSTEM_LIBRARY.RUN
<USRDSK>UNGER>MY_PROG.RUN

OK, LIST_EPF MY_PROG -SEGMENTS

1 Program EPF.

(act ive) <USRDSK>UNGER>MY_PROG.RUN
1 procedure segment: +0:4235
1 l i n k a g e a r e a : - 2 : 4 3 7 7 (3) / 7 0 4 4

OK,

8-12 Second Edition

Maps and Addresses

The difference between an actual ECB address of 4377/7050 and an actual
linkage address of 4377/7044 is 4, yielding a corresponding imaginary ECB
address of-2/4, or-0002/000004 as shown in the examples of SUBR1 earlier in
this chapter.

Examining the Stack Frame for a Procedure Invocation
Once you know the address of a stack frame for a procedure invocation, you can
reenter the debugger and examine the stack frame with the following commands:

SB stackroot offset
ASB%+n

Here, stackroot is the segment number of the stack root, displayed by
DUMP_STACK at the top of its display.

Note If the stack switches to another segment, the new segment number is shown in the
DUMP_STACK display at that point Watch for STACK SEGMENT IS messages
during the display. Use the most recent message displayed before the target stack frame.

The offset value comes from the octal number following the stack frame number.
In the above DUMP_STACK example, the offset value for Frame (10) is 3616.

Second Edition 8-13

EDIT BINARY

9
EDITJBINARY is an interactive tool that allows you to create and edit
binary libraries. You can use EDITJBINARY to create a binary file
containing the linkage information for a library EPF. A binary file of this
type is known as a binary library. You can also use EDIT_BINARY to
edit or combine existing binary libraries. EDITBINARY generates a new
binary file as output. You use this binary file when building an EPF using
BIND.
When creating a binary library, EDITJBINARY reads the entrypoint table
of a library EPF and creates a binary library containing a dynamic link for
each entrypoint. The library EPF can be either a dynamic EPF or a
registrable EPF. You can also use EDITJBINARY to create individual
dynts, load in other binary files, list the entrypoints in a binary library,
include bypass information, and carry out a variety of other useful
functions.
The syntax of the EDIT_BINARY command is as follows:

EDIT_BINARY output jpathname -DAM -SKIP -NO_QUERY -HELP

The command options are described later in this chapter.
The EDIT_BINARY command returns a colon (:) as a prompt character.
You respond to this prompt by issuing EDITBINARY subcommands,
ending the session with either FILE or QUIT. The command interface is
very similar to the BIND command interface, and EDITBINARY and
BIND subcommands with similar functions have the same names. If you
are familiar with BIND, you should have no difficulty using
EDIT BINARY.

Note If you have created your own binary libraries in the past using EDB, you should
find that EDITBINARY is a much more efficient tool. For information on
Prime's other binary editing tools, see Appendix B.

This chapter shows you how to create a simple binary library with dynamic
links corresponding to the entrypoints in a library EPF. The chapter also

Second Edition 9-1

Advanced Programmer's Guide I: BIND and EPFs

includes a complete reference to EDITJBINARY subcommands and
options that you can use for creating more complex binary libraries.

Creating a Binary Library From a Library EPF
You need only a few EDITJBINARY subcommands to create a binary
library with dynamic links corresponding to the entrypoints in a library
EPF. The following sample session shows you how.

Suppose that you have created a library EPF called MY JJBRARY.RUN
that includes 10 entrypoints. To create a binary library called
MY_BINARY.BIN with dynamic links to each of these subroutines, use
the following sequence of commands:

OK, EDIT_BINARY MY_BINARY.BIN
[EDIT_BINARY Rev.T3.0-23.0 (c)1990, Prime Computer, Inc.]
: RFL
: READ MY_LIBRARY.RUN

Library creation date: 90-10-16.10:01:16.Tue
L i b r a r y t y p e : p r o g r a m
N u m b e r o f e n t r i e s : 1 0

End processing MY_LIBRARY.RUN.
: SFL
: FILE
OK,

The following comments explain the sample session:

• The EDITJBINARY command line specifies the output filename,
MY_BINARY. If you don't specify the filename here, you must give
it at the end of the session with the FILE subcommand.

• The RFL subcommand adds code to the binary library to tell BIND
to load only those modules that it needs to resolve references. This
reduces the size of the EPF runfile by preventing the inclusion of
unneeded modules. Most binary libraries should begin with an RFL
and end with an SFL.

• The READ subcommand reads the entrypoint table of the specified
library EPF, creating a dynt for each entry and reporting on the
number of EPF library entries found.

• The SFL subcommand complements the RFL subcommand by telling
BIND to load all subsequent modules whether they are needed or
not. If your binary library build sequence includes an RFL, you
should follow it with an SFL. This assures that any binary files you
load after your library during a BIND session are loaded correctly.

9-2 Second Edition

EDIT BINARY

You can use EDITJBINARY to create more complex libraries in order to
simplify your linking tasks. For example, you can have EDITJBINARY
read more than one library EPF in order to create a binary library with
dynamic links to several runtime libraries. You can also include references
to Prime-supplied binary libraries in your binary libraries.
For example, suppose you have created a library EPF of language-specific
routines called MY JXJLIBRARY.RUN which you call from C language
programs. By following the procedure given in the previous example, you
could create a binary library, called MY_C_LIB.BIN, containing dynamic
links to the entrypoints in MY_CC JJBRARY.RUN. A typical BIND
session using this binary library might look like this:

OK, BIND
[BIND Rev. T3.0-23.0 (c) 1990, Prime Computer, Inc.]

LO MY_C_PROGRAM.BIN
LO MY_C_LIB.BIN
LI C_LIB

BIND COMPLETE
: FILE
OK,

You can simplify this build sequence by including a reference to the
Prime-supplied binary library C_LIB in your custom binary library. The
following example shows you how.

OK, EDIT_BINARY
[EDITBINARY Rev.T3.0-23.0 (c)1990, Prime Computer, Inc.]
: RFL
: READ MY_CC_LIBRARY.RUN

L i b r a r y c r e a t i o n d a t e : 9 0 - 1 0 - 1 8 . 11 : 0 3 : 2 8 . T h u
L i b r a r y t y p e : p r o c e s s
N u m b e r o f e n t r i e s : 3 4

End processing CC_LIBRARY.RUN.
LIBRARY LIB>C_LIB
SFL
FILE MY_C_LIB.BIN

OK,

The LIBRARY command adds code to your binary library that tells BIND
to load another binary library. In this case, your binary library
MY_C_LIB would reference the LIB > CLIB binary library. This is
equivalent to typing LIBRARY C_LIB during the BIND session. You can
now build your C program with BIND by loading only MY_C_LIB.

Second Edition 9-3

Advanced Programmer's Guide I: BIND and EPFs

OK, BIND
[BIND Rev. T3.0-23.0 (c) 1990, Prime Computer, Inc.]
: LO MY_C_PRQGRAM.BIN
: LO MY_C_LIB.BIN
BIND COMPLETE
: FILE
OK,

In effect, you have made all the dynamic links in the Prime-supplied binary
library C_LIB available from your binary library. If you frequently need to
load a Prime-supplied library along with your own binary library, you can
simplify your build sequences by associating the binary libraries in this
way.

Note You can also use the LOAD subcommand of EDIT_BINARY to load the actual
text of a Prime-supplied library EPF into your binary library. However, this creates
a much larger binary file. It also complicates library maintenance, because you
would need to rebuild your binary library whenever you wished to incorporate a
new version of the Prime-supplied library EPF.

You may wish to set your BINARYS search rules to enable
EDnjBINARY and BIND to locate binary files. For further details on
search rules refer to the Advanced Programmer's Guide II: File System.

EDIT BINARY Reference

This section explains all EDITJBINARY command line options and
subcommands.

Command Line Options

O p t i o n D e s c r i p t i o n

output jpathname Used optionally to specify the pathname of the
output binary library file to be created. The file
is automatically assigned the .BIN suffix;
specifying the suffix on the command line is
optional. You can specify a complete pathname
or a filename; if you specify a filename,
EDIT_BINARY creates the file in your
currently attached directory.

9-4 Second Edition

EDIT BINARY

-DAM

-HELP

-NO_QUERY
-NQ

-SKIP

You can specify the output pathname here, or
within EDITJBINARY when you issue a FILE
subcommand. EDITJBINARY prompts you to
resolve discrepancies if you specify different
output pathnames in these two places or
specified no filename at all.
Causes EDIT_BINARY to create a DAM
(Direct Access Method) output file. The default
is SAM.
Provides on-line help. This option displays the
correct command line syntax, then returns to
PRIMOS command level without executing the
EDITJBINARY command.
Suppresses queries that occur

• When you give the QUIT subcommand
without saving the file created

• When you give a FILE subcommand that
would overwrite a file with the same name

-NO_QUERY does not suppress queries to
resolve descrepancies in filenames supplied
during the EDTTJBINARY session.

Causes EDIT_BINARY to include bypass
information with each module loaded. This
speeds up linking by allowing BIND (or SEG) to
skip unneeded routines efficiently instead of
reading and discarding all unwanted object text.

Subcommands

CHANGE_SYMBOL_NAME oldjentryname newentryname
CSN

Places code in your file that causes BIND (and SEG) to change all
previous occurrences of old_entryname to new entryname.

Second Edition 9-5

Advanced Programmer's Guide I: BIND and EPFs

COMMENT
CMT

Defines the beginning of a non-executing comment in the output binary
file. The comment continues until you insert a line of text that contains
only a dollar sign ($) character. A comment may be up to 508 characters
in length. EDITJBINARY truncates comments that exceed this maximum
length.

COPY
C

- UNTIL entryname
-INCLUDING entryname
-END

Copies information from the current file position of the input binary file to
the output binary file. The subcommand options define where copying
ends. The -UNTIL option stops the copy operation when the module
containing the named entry is encountered.
The -INCLUDING option stops copying after copying the module
containing the named entry. The -END option copies until it encounters
the end of the input file. If you specify no option, COPY copies until it
encounters the end of the file. You must use the OPEN subcommand to
open the input file before issuing the COPY subcommand. You can use
the LOCATE subcommand to change the current file position within the
input file.

DEFAULTJ)YNT_TYPE
DDT

f - PERJJSER
- SHARED
- DEFAULT

Sets the default dynt type used by subsequent DYNT subcommands. This
default applies if you issues a DYNT subcommand with either no option
or the -DEFAULT option. Initially, EDITJBINARY has a default dynt
type of per-user. You can issue the DEFAULTJDYNTJTYPE command
at any time during an EDHJBINARY session to redefine the default dynt
type. Dynt types are discussed in greater detail in Chapter 6.

9-6 Second Edition

EDIT BINARY

DYNT
- PERJJSER
-SHARED
- DEFAULT

entryname [entryname...]

Defines entryname as a dynamic link (dynt). You can specify more than
one entryname to define multiple dynamic links. Use the -PERJJSER,
-SHARED, and -DEFAULT options to set the dynt type. If you don't
specify an option, the dynt type is set to the option specified by the most
recent DEFAULTJDYNTJTYPE subcommand. If no
DEFAULT_DYNT_TYPE subcommand has been issued during this
EDITJBINARY session, the dynt type is set to per-user. Dynt types are
discussed in greater detail in Chapter 6.

EXTRACT entryname
E

Extracts the module containing the specified entryname from the input
library EPF and copies it to the output binary library. You must first open
the input file by issuing the OPEN subcommand. The EXTRACT
subcommand permits you to extract multiple entries by listing entrynames.
Entries are searched for in the order listed; each search begins at the
current file position. If an entryname cannot be found, EXTRACT returns
an error message and resets the current file position to the end of the
input file. It does not search for subsequent listed entrynames.

FILE [pathname]

Saves the binary library generated during the EDITJBINARY session.
pathname specifies the name under which the file is to be saved. If you
don't supply pathname, EDITBINARY does one of the following:

• Saves the file under the pathname you supplied when you invoked
EDIT BINARY

• Prompts you for a pathname if you did not supply one when you
invoked EDIT BINARY

If you supply different pathnames with the FILE subcommand and on the
EDITJBINARY command line, EDHJBINARY asks you to resolve the
difference.

Second Edition 9-7

Advanced Programmer's Guide I: BIND and EPFs

HELP -LIST
command name

Displays information on EDITJBINARY subcommands. Use the -LIST
option to get a list of EDIT_BINARY subcommands. Give a
command jiame to get help on a specific subcommand.

LIBRARY pathname
Ll

Includes code in your binary library that causes BIND (or SEG) to load
the additional binary library specified in pathname.

-COMMENTS'
-COMMONS
-DYNTS
- ENTRIES
- LIBRARIES
- A L L
(-END
[entryname
- BYJ/IODULE
- NO WAIT

LIST_CONTENTS
LC

Displays the contents of the input binary library. You must first open the
input file using the OPEN subcommand.
You can specify options to list comments (-COMMENTS), common areas
(-COMMONS), dynt names (-DYNTS), entrynames (-ENTRIES), library
names (-LIBRARIES), or all of these items (-ALL). Multiple options can
be specified in any sequence.
LIST_CONTENTS indicates dynt types with the abbreviations PU
(per-user), SH (shared), and DF (default). It also uses the abbreviations C
(common area), ENT (entry), and LIB (library).
LIST_CONTENTS lists the items from the current file position to either
the end of the file (specified by the -END option) or until it encounters the
specified entryname. If no option is specified or the entryname is not
found, LIST_CONTENTS lists to the end of the input file and resets the

9-8 Second Edition

EDIT BINARY

current file position to that point. To return to the beginning of the input
file, issue the TOP subcommand.
If you specify the BY_MODULE option, LIST_CONTENTS groups
entrynames together according to their compilation units.
The NO_WAIT option scrolls out the item listings without pausing for
user response after each screenful of information.

LOAD pathname {pathname...]
LO

Includes the specified binary files in your output binary file. If you give a
filename instead of a pathname, BINARYS search rules are used to find
the file.

LOCATE
LOC

SFL
RFL
entryname^

Moves the current file position in the input binary file to the next SFL or
RFL group, or to the beginning of the compilation unit that contains the
specified entryname. You must first open the input file using the OPEN
subcommand. If the location cannot be found, LOCATE sets the current
file position to the end of the file and issues an error message.

OPEN pathname

Opens a binary file for use as input. You must open an input file before
issuing a COPY, EXTRACT, LIST_CONTENTS, LOCATE, or TOP
subcommand. EDITBINARY only permits one input file to be open at a
time; opening an input file automatically closes any previously open input
file. If you give a filename instead of a pathname, BINARYS search rules
are used to find the file.

QUIT
Q

Ends the EDIT BINARY session.

Second Edition 9-9

Advanced Programmer's Guide I: BIND and EPFs

Caution EDHJBINARY does not save the binary file created during the EDHJBINARY
session when you issue the QUIT subcommand. To save the file, you must issue
the FILE subcommand. The FILE subcommand saves the file and quits the
session; the QUIT subcommand just quits the session.

READ epfjDathname
RE

- PERJJSER
- SHARED
- DEFAULT

Reads the library EPF specified by epfjpathname and places a dynt in
your binary file for every entryname found in the library EPF entrypoint
table.
The epfjpathname can be a dynamic EPF or a registrable EPF. You
specify a registered library EPF by supplying the pathname of the
registrable EPF file; you cannot read a registered library EPF directly.
You can read in a registrable EPF file before or after you have actually
registered the library EPF.
The binary file created by this subcommand has a dynt type assigned to all
of its dynts. You can specify the dynt type using the -PERJJSER,
-SHARED, or -DEFAULT option. If you don't specify a dynt type option
in this subcommand, the dynt type created depends on the library EPF
type.

• If the library is a dynamic EPF, per-user dynts are generated in the
binary library.

• If the library is a registrable EPF, default dynts are generated in the
binary library.

Use the -PERJJSER, -SHARED or -DEFAULT option to override these
dynt type defaults. Dynt types are discussed in greater detail in Chapter 6.

RFL

Writes code for a reset-force-load (RFL) to your binary file. BIND only
loads binary modules that are required to resolve outstanding references
while RFL is in effect. The RFL remains in effect until BIND encounters
set-force-load (SFL) code. Most binary libraries begin with an RFL. If
you begin your library with an RFL, be sure to end it with an SFL.

9-70 Second Edition

EDIT BINARY

SFL

Writes code for a set-force-load (SFL) to your binary file. BIND loads all
binary modules, whether they are required to resolve a reference or not,
while SFL is in effect. SFL is in effect by default until BIND encounters
an RFL.

TOP

Positions the current file pointer to the top of the input binary file. You
must first open the input file using the OPEN subcommand before issuing
this subcommand.

Other binary editing tools are described in Appendix B.

Second Edition 9-11

Appendices

Coding EPFs in PMA
A

This appendix summarizes basic concepts of PMA (Prime Macro Assembler)
programming and then discusses specific requirements for writing PMA
subroutines mat are to execute as EPFs.

Basic Concepts of PMA Programming

A PMA source file consists of one or more modules. A module may contain one
or more subroutines. When a module is assembled (using PMA), an object file
is generated, usually with the .BIN filename suffix. This object file consists of

• Module description information
• Procedure text for each subroutine
• Linkage text for each subroutine
• Stack and parameter allocation information for each subroutine entrypoint
• Linkage information for each subroutine entrypoint
• External linkage information, including references to common areas and

other subroutines

You tell PMA which part of a module you are building by including special
pseudo-operations in the PMA source code. Pseudo-operations are directives to
the assembler; usually, they change the way in which subsequent lines in the
source file are interpreted. Pseudo-operations themselves may or may not cause
specific data (such as instructions or storage allocation information) to be
generated in the object text.
The last line of all PMA modules must be an END pseudo-operation. Usually
there is only one module in a source file, but it is possible to create a source file
containing multiple modules, each module terminated with an END
pseudo-operation. PMA modules that serve as main entrypoints for a program
(whether an EPF or a static-mode program) must name the main entrypoint's
ECB in the operand field of the END pseudo-operation. No comment lines or
blank lines may follow the END pseudo-operation. Other important
pseudo-operations are described below.

Second Edition A-1

Advanced Programmer's Guide I: BIND and EPFS

PMA subroutines that are to be linked into EPFs are usually constructed
according to the following template:

Source Text

*

SEG or SEGR

SYML

RLIT

ENT

LINK

ECB

DYNM
EXT

PROC

instructions
LINK

data

END

Meaning

Comment lines describing the subroutine
Pseudo-operation to specify a V-mode or I-mode
module
Optional pseudo-operation to turn on long (as many
as 32 characters) symbol names
Optional pseudo-operation to cause placement of
literals in procedure text

Optional pseudo-operations to export names for
reference by external modules
Pseudo-operation to switch to linkage text
generation for placement of the ECB
Pseudo-operation to generate the ECB itself, and,
optionally, additional ECBs for alternate entrypoints
or internal subroutines

Pseudo-operation to specify stack frame allocation
Optional pseudo-operations to specify external
symbols
Pseudo-operation to switch back to generating
procedure text
The procedure code of the module

Optional pseudo-operation for switching to linkage
text generation
Various address definition, data definition, and
storage allocation pseudo-operations (optional), to
describe the format and data for the link frame
Pseudo-operation to delimit the end of the module
and optionally designate the main entrypoint of the
module

The remainder of this section describes portions of the object text and of the
above template that are specifically related to coding a PMA module for
execution within an EPF. See the Assembly Language Programmer's Guide for
further information on PMA. For information on the instruction sets and
architecture of the 50 Series machines, see the System Architecture Reference
Guide.

A-2 Second Edition

Coding EPFs in PMA

Use of SEG or SEGR
The first non-comment line of a PMA subroutine must be either the SEG
pseudo-operation (for a V-mode subroutine) or the SEGR pseudo-operation (for
an I-mode subroutine). If this is not the case, BIND refuses to link the object
text (.BIN file) generated by assembling the subroutine via PMA. Additionally,
the keyword PURE or IMPURE should follow the SEG or SEGR keyword on
the same line, as described below in the sections on Impure PMA Module
Restrictions and Pure PMA Modules. If neither PURE nor IMPURE is
specified, the default is PURE.
If you are creating a registered EPF, you should also specify the
-SPLHJLINKAGE option with the SEG or SEGR pseudo-operations. This
option causes the assembler to separate the linkage from the data and store them
in separate frames. It is advisable to reassemble existing programs with the
-SPLITJLINKAGE option before using them to build registered EPFs. If you
specify -SPLITJLINKAGE, BIND can create a registered EPF that shares
linkage. If you do not specify -SPLIT_LINKAGE, BIND can create a registered
EPF, but one that cannot share linkage.

Procedure Text
The procedure text for a subroutine consists of the instructions that make up the
body of the subroutine. In a PMA subroutine, procedure text generation is
specified via the pseudo-operation

PROC

Linkage Text
The linkage text for a subroutine consists of static data used and modified by the
subroutine. Only one copy of linkage text exists for a subroutine within a
program or library, even if the subroutine invokes itself recursively. Linkage text
generation is specified via the pseudo-operation

L I N K

Stack and Parameter Allocation Information
The DYNM pseudo-operation is used to specify the allocation of the stack frame
for the module. The stack frame is also used to hold the argument list pointers
for the subroutine invocation. Each subroutine invocation causes the dynamic
allocation of its stack frame. Initially, a stack frame contains undefined values
except for the stack frame header and the argument pointers (if any).

Second Edition A-3

Advanced Programmer's Guide I: BIND and EPFS

Typically, the DYNM pseudo-operation is used in the following manner:

DYNM temporary-l(size-l) , temporary-2(size-2)
DYNM argument-1(3) , argument-2(3) , argument-3(3),

argument-4(3)
DYNM temporary-3(size-3) , temporary-4(size-4)

The argument list pointers must be allocated 3 halfwords each, and must be
contiguous in the stack frame as indicated. Other temporaries can precede or
follow the argument list template in the stack frame. The start of the argument
list template in this case is argument-1, and the number of arguments is 4.
The DYNM pseudo-operation provides the only way of allocating stack frame
storage in PMA. Using an EQU pseudo-operation to set a symbol equivalent to,
say, SB%+102 does not affect allocation of the stack frame in any way.
Use of DYNM changes allocation of storage to the stack frame only temporarily.
The current assembly pointer is still either in procedure or linkage text, so
machine instructions and data generation directives following DYNM are placed
in either the procedure or the linkage area rather than the stack frame. (You
cannot specify initial values for storage in the stack frame except by including
prologue code in your subroutine to perform the initialization at runtime.)

Linkage Information
Information for each subroutine entrypoint that describes the entrypoint to BIND
is called linkage information. Its purpose is to tie together the procedure text,
linkage text, and stack and parameter allocation information for the entrypoint.
This information is turned into an ECB (Entry Control Block) for the entrypoint
by BIND.
When a dynamic EPF is invoked, PRIMOS modifies the ECB for each
subroutine in the EPF so that the pointer to the linkage text in each ECB
identifies the actual location of the linkage text. For this reason, all ECBs in
dynamic EPFs should be placed in the linkage text. When you are creating a
registrable EPF with SPLITJLINKAGE, BIND places ECBs from the linkage
text in shared linkage. With registered EPFs you can also place ECBs in the
procedure text.
ECBs are created with the ECB pseudo-operation

LINK
ech_lajbel ECB first_instruction_label,, first_arg,n_args

Note that the ECB is placed in the linkage text for the module. The ECB is
labeled with ecb label, which identifies the actual target of procedure call (PCL)

A-4 Second Edition

Coding EPFs in PMA

instructions to the entrypoint. The ENT pseudo-operation is used to associate
the exported (externally available) symbol name with ecbjabel:

ENT externaljname, ecb_label

If external name and ecbjabel are the same name, then only ENT ecbjabel
need be specified.
The label of the first instruction to be executed (an ARGT instruction when the
procedure has one or more arguments) is identified via first instruction label.
The label of the start of the argument list template is first arg and must refer to a
stack-relative label (declared via the DYNM pseudo-operation). The number of
arguments is specified as nargs.
The ECB pseudo-operation can be used to specify other information not
described above. For example, between the two commas in the form above, you
could define the start of linkage text for the entrypoint. It defaults to the start of
linkage text for the module, as indicated via the LINK pseudo-operation.
Another optional field, the stack size, defaults to the amount of stack space
explicitly reserved via the DYNM pseudo-operation. You can also specify the
initial value of the keys register via ECB, although it defaults (appropriately) to
the addressing mode of the module (V-mode or I-mode).

External Linkage Information
A PMA module must often refer to symbols that are not defined within the scope
of the module itself. These are called external references.
A reference to a subroutine that is defined externally is a reference to an external
subroutine. For the most part, references to external subroutines are handled
automatically by PMA via the CALL pseudo-operation

CALL subroutine

When PMA detects a CALL pseudo-operation while assembling V-mode or
I-mode code, it

1. Identifies subroutine as an external reference, as if the pseudo-operation
EXT subroutine had been issued

2. Places one D? (Indirect Pointer) in the linkage text that points to the
external subroutine at runtime, for use by all CALLs to that subroutine in
the current module, as if the following pseudo-operations sequence had
been present:

LINK (Switches to generating linkage text)
s_jbroutine_ip IP subroutine

PROC (Only if originally in procedure text)

Second Edition A-5

Advanced Programmer's Guide I: BIND and EPFS

3. Generates a procedure call instruction to invoke the subroutine, identifying
indirection through the IP it generated as the target of the instruction:

PCL subroutine_ip,*

All of the above can be explicitly specified by the PMA programmer, but use of
the CALL pseudo-operation is recommended when calling external subroutines.
(To call a subroutine within the current module, use a PCL to its ECB without
specifying indirection.)
Another form of external reference includes references to program common
areas and other symbols. Here, PMA also automatically generates IPs and
implicitly forms indirect instructions that refer to the external symbols.
However, the symbols must be explicitly declared as external as follows:

EXT symbol

Caution Do not use the XAC pseudo-operation or its equivalent EXT/DAC pair in V-mode or
I-mode PMA modules. PMA does not treat this usage as an error, however, neither
BIND nor SEG support that form of external link (DAC and XAC generate only a 16-bit
halfword link), and PRIMOS does not support the conversion of an imaginary 16-bit
address to an actual 16-bit address.
The XAC pseudo-operation can be used to link to a procedure segment or an impure
segment label. However, you must supply the segment number independently.

The COMM pseudo-operation is particularly useful for building representations
of common areas. PMA automatically generates IPs for references into common
areas, including references into the midst of common areas. In other words,
PMA does not generate a single IP to the beginning of a common area and then
use offset addressing (via the XB or X registers) to access items within the
common area. Instead, PMA generates one IP for each referenced location in a
common area. This method produces*more efficient code in terms of execution
time, at the expense of the size of linkage text (because more than one IP may be
generated for each common area). By using this method, PMA avoids use of the
XB or X register — registers that may be used by the programmer in
neighboring instructions. However, because PMA must convert instructions
referencing common areas so that they go indirect through IPs, the instructions
in the source program cannot specify indirection.
If you want to refer to items within a common area using offset addressing rather
than directly through an IP, you must use either the XB or X register. To use the
XB register, code the instruction

EAXB common_area
(Becomes common_area_ip,*)

A-6 Second Edition

Coding EPFs in PMA

Then, your program performs subsequent references to items within the common
area by referencing XB%+ojfset, where offset is the offset of the item, in
halfwords, from the beginning of commonarea.
To use the X register, code the instruction

LDX = offset

Subsequent references to the item that is offset halfwords from the beginning of
commonarea are performed by referencing commonarea, x. For example,

LDA common_area,X

Because common_area is an external, PMA automatically translates this into

LDA common_area_ip, *X

Therefore, you cannot perform indirection through a pointer in a common area
without using effective address calculation and the XB register.

Note When using the XB or X register, remember that, as with all other general-purpose
registers, the PCL (or CALL) instruction may destroy the register contents.

Designating the Main Entrypoint
If you are writing a PMA module that is to contain the main entrypoint for a
program EPF, you must designate the main entrypoint of the module by
specifying the symbol name for the ECB in the operand field of the END
pseudo-operation at the end of the module. For example,

SEG
RLIT
SYML

*
SUBR COUNT,COUNT_ECB

*
LINK

COUNT_ECB ECB COUNT_START,,COMMAND_LINE,2*
DYNM COMMAND_LINE(3),SEVERITY_CODE(3)

*
PROC

*
COUNT_START EQU *

ARGT

Second Edition A-7

Advanced Programmer's Guide I: BIND and EPFS

END COUNT_ECB

As this example illustrates, you must specify the label that tags the ECB for the
main entrypoint (COUNT_ECB), not the external name of the subroutine
(COUNT) or the starting address of the procedure code(COUNT_START).
If you specify the main entrypoint in this fashion, you may still use the module
as a subroutine rather than a main program; in this case, your specification of the
main entrypoint is ignored.
If you fail to specify the main entrypoint as shown, linking the assembled
module as the first module in a program EPF produces an EPF that, when run,
might produce an error message such as

Error: condition "ILLEGAL_SEGNO$" raised at 41 (3)/122722.
(Referencing l(3)/0).
ER!

If you do not have access to the source code of the module, or if you wish to use
a "quick fix", relink the module and use the MAIN subcommand of BIND to
specify the entrypoint of the module that is the main entrypoint of the program
EPF. You may do this by using the following command sequence:

OK, BIND
[BIND Rev. T3.0-23.0 (c) 1990, Prime Computer, Inc.]
: LOAD failing-program.RUN
: MAIN ma in-entrypoint-name
BIND COMPLETE
: FILE working-program.RUN
OK,

Restrictions on Writing PMA Modules for EPF Execution

When writing a module in PMA for execution within an EPF, several restrictions
must be observed. This section discusses these restrictions.

• Each subroutine in the module must execute in the V-mode or I-mode
environment.

• If the module has impure procedure text, it must be declared as an impure
module.

A-8 Second Edition

Coding EPFs in PMA

• If the module has pure procedure text, it should be declared as a pure
module.

• Subroutines within the module must not use explicit addressing to
externals unless their addresses are explicitly set during the BIND session.

• Indirect Pointers (IPs) used in the module must never be modified by the
module, because they are not necessarily reinitialized when the EPF is
reinvoked.

PMA Subroutines Must Execute in V-mode or I-mode
Environment

A PMA subroutine intended for execution within EPFs must be assembled in the
V-mode or I-mode environment, as implied by the requirements that PMA
modules used for EPFs must begin with SEG or SEGR.
Under most circumstances, a PMA module must execute entirely in V-mode or
I-mode. Occasionally, it may enter R-mode or S-mode to execute a limited set of
instructions. For example, it may wish to execute a PIO instruction to read or
test for a character from the user terminal. However, the PMA subroutine must
reenter V-mode or I-mode before returning to the calling procedure.

Impure PMA Module Restrictions
If a PMA module is impure, the SEG or SEGR pseudo-operation at the top of the
module must read SEG IMPURE or SEGR IMPURE.
An impure PMA module is characterized by an inability to be executed with the
pure procedure (PROC) portion of the subroutine protected against modification
by the subroutine. Instead, BIND places such a module in impure procedure
(IMPURE) segments of an EPF. An IMPURE segment is similar to a PROC
segment in that it contains procedure code and therefore must start at offset 0 in
an actual segment, whereas DATA segments are relocatable to anywhere inside a
segment. However, an IMPURE segment is not shared between users and is not
protected against writing. Except in the case of a process-class library EPF,
IMPURE segments are treated like DATA segments by PRIMOS, in that they are
reinitialized each time the EPF is invoked.
The following coding practices result in impure PMA modules:

• Self-modifying code

• An ECB in the procedure text

• An IP in the procedure text

• A JST instruction to an internal subroutine

• An RLIT or FIN pseudo-operation, when storing into a literal

Second Edition A-9

Advanced Programmer's Guide I: BIND and EPFS

These coding practices are described in the following paragraphs.

Any PMA module that explicitly stores into the procedure text is inherently
impure. Such modules are said to employ self-modifying code. This is widely
regarded as poor programming practice. Moreover, some Prime systems employ
preprocessors or a pipeline architecture, which may not behave as expected
under such circumstances. On Prime systems, therefore, self-modifying code
may not work or may result in nontransportable programs.
However, a PMA module can also implicitly modify procedure text. For
example, if you place an ECB in the procedure text of a dynamic EPF, the
procedure text is no longer pure. The actual placement of the linkage text is
determined when the program is run, not when it is linked by BIND. PRIMOS
must set the linkage base pointers for the ECB of each procedure in the EPF. If
an ECB is in the procedure text, which is normally protected against writing,
PRIMOS would encounter an access violation error if it tried to set the linkage
base pointer for that ECB; therefore, PRIMOS does not attempt to modify the
ECB. It is because the ECB requires modification at runtime that a module with
an ECB in the procedure text is considered impure.
When building a dynamic EPF, BIND issues a warning message if it finds an
ECB in procedure text, unless you have specified the IMPURE keyword with the
SEG or SEGR pseudo-operations. If the resulting EPF is executed it may
produce an access violation error when the offending module is invoked. This
access violation is invoked because the imaginary address has not been
translated into an actual address.

Similarly, placing IPs (Indirect Pointers) in the procedure text of a dynamic EPF
normally results in an impure module. However, there is a way to create pure
procedure text containing IPs. When you use BIND to build the dynamic EPF,
use the SYMBOL subcommand to explicitly locate the external symbols
referenced by the IPs.
A JST (Jump and STore) instruction that references an internal subroutine also
produces impure code. This is because JST stores the offset portion of the return
address in the halfword that is the target of the instruction and then begins
execution at the subsequent halfword. If the target of the JST instruction is in
procedure code, rather than linkage, common, or stack frame storage, then the
procedure code is impure. Instead, use the JSXB, JSX, or JSY instructions, and
modify the target subroutine accordingly.
The RLIT and FIN pseudo-operations are often used to specify that literals are to
be placed in the procedure text, rather than the linkage text. If literals are
properly used, this does not result in an impure PMA module. However, using
RLIT or FIN for literals that are to be stored into results in an impure module.
(Storing into literals is considered extremely bad programming practice.) For
example, the following literal reference is a pure reference independent of the
use of RLIT or FIN:

LDA =5

A-10 Second Edition

Coding EPFs in PMA

However, the following literal reference requires that the RLIT or FIN
pseudo-operation not be used if the procedure is to remain pure:

STA =10

This reference also has the dangerous side effect of causing references to the
literal value of 10 to reference a different value for the entire subroutine or for
portions of that subroutine.

Pure PMA Modules

If a PMA module is pure, then the SEG or SEGR pseudo-operation at the top of
the module should read SEG PURE or SEGR PURE. The SEG and SEGR
pseudo-operations default to PURE if you do not specify a keyword. However,
explicitly specifying the keyword PURE can be a convenient signal to other
programmers that you have checked the module for purity. If this convention is
used, then any PMA module without a PURE or IMPURE keyword following
the SEG or SEGR pseudo-operation should be checked for purity before being
linked into an EPF.

Explicit Addressing of Dynamically Placed Externals
If a PMA module attempts to use an explicit address to an external entity, and the
external entity is not placed via the SYMBOL command during the BIND
session, the PMA module may not execute properly.
Such an attempt might appear as follows:

LDA THEVALUE,*

THEVALUE OCT 4001
OCT 174000

To remedy this situation, either use the SYMBOL command to place the entity
being addressed through THEVALUE at 4001/174000, or fix THEVALUE to
appear as follows:

EXT ENTITY
THEVALUE IP ENTITY

Second Edition A-11

Advanced Programmer's Guide I: BIND and EPFS

Storing Into IPs or ECBs
If your program declares Indirect Pointers (IPs) or Entry Control Blocks (ECBs),
you must be careful about modifying them during execution. For example,
consider the following subroutine in a dynamic EPF:

SEG
RLIT
SYML

*
ENT TESTSUBR

*
LINK

TESTSUBR ECB
PROC

START

*
START CALL TNOU

AP THE_IP,*S
AP =16,SL

*
EAL STRING2
STL THE IP

PRTN

STRING1 BCI 'THIS IS STRING 1'
STRING2
*

BCI

LINK

'THIS IS STRING 2'

THE_IP*
IP STRING1

END TESTSUBR

This program uses THEJP to point to one of two strings. It specifies that,
initially, THEJP is to point to STRING 1, and that for all subsequent calls,
THEJP is to point to STRING2. The intention here is for the subroutine to
behave differently during its first invocation by a program than it behaves during
subsequent invocations by the program.
However, once THEJP is modified, it is not reinitialized by PRIMOS during
repeated invocations of the program. There are two exceptions to this rule.
THEJP would be reinitialized if the program is removed from memory.
THE_D? would also be reinitialized if the K$INIT_ALL key is supplied to
EPF$INIT by a user program. The EPF$INIT subroutine is further described in
the Advanced Programmer's Guide III: Command Environment.

A-12 Second Edition

Coding EPFs in PMA

For example, if you call this subroutine from a program that simply calls
TESTSUBR once and then exits, THEJP would not be reinitialized after each
call. Invoking the program repeatedly would not produce identical results, as
shown in the following sample session:

OK, RESUME TESTPROG
THIS IS STRING 1
OK, RESUME TESTPROG
THIS IS STRING 2
OK, RESUME TESTPROG
THIS IS STRING 2
OK, REMOVE_EPF TESTPROG
OK, RESUME TESTPROG
THIS IS STRING 1
OK, RESUME TESTPROG
THIS IS STRING 2
OK,

The REMOVEJEPF command, used midway through this session, removes the
EPF from memory. This forces the complete reinitialization of the EPF at the
next RESUME command, and thus restores THEJP to its initial state.
In any situation where you wish to modify IPs or ECBs, split them into

• The desired initial value (D? or ECB) that is not modified by the program
• A block of linkage information (using the BSS pseudo-operation) that is to

contain the actual value that is used and modified (BSS 2 for IP, BSS 20
for ECB) during program execution

Then, create another linkage-resident variable called FIRSTJNVOCATION and
declared as follows:

FIRST_INVOCATION OCT 1

Having done this, the first thing your subroutine should do is examine
FIRSTJNVOCATION. If nonzero, it should initialize the block of linkage
information described above to the desired initial value (IP or ECB).
Then, before your subroutine returns, it should examine FIRSTJNVOCATION
again, and, if nonzero, it should update the block of linkage information as
desired and then set FIRSTJNVOCATION to 0.
Because FIRSTJNVOCATION is an initialized datum, it is reinitialized by
PRIMOS during every program invocation.

Second Edition A-13

Advanced Programmer's Guide I: BIND and EPFS

Here is the TESTSUBR subroutine, shown above, modified according to these
recommendations:

SEG
RLIT
SYML

*
ENT TESTSUBR

LINK
TESTSUBR ECB

PROC
*
START

START

LDA FIRST_INVOCATION
BEQ GO

RETURN
*

EAL THE_IP_INITIAL, *
STL THE IP

*
GO CALL TNOU

AP THE_IP,*S
AP =16,SL

*
LDA
BEQ

FIRSTJCNVOCAT
RETURN

EAL STRING2
STL THE_IP

CRA
STA FIRST INVOCATION

PRTN

STRING1 BCI
STRING2 BCI
*

'THIS IS STRING 1'
'THIS IS STRING 2'

LINK
THE_IP_INITIAL IP STRING1
T H E _ I P B S S 2
FIRST_INVOCATION OCT 1
*

END TESTSUBR

Now, invoking the TESTPROG program linked with the new version of
TESTSUBR shown above produces the correct output during subsequent
invocations:

A-14 Second Edition

Coding EPFs in PMA

OK, RESUME TESTPROG
THIS IS STRING 1
OK, RESUME TESTPROG
THIS IS STRING 1
OK, RESUME TESTPROG
THIS IS STRING 1
OK,

When you build a registered EPF in which you have specified the
SPLIT_LINKAGE keyword, BIND places all IPs created with the IP
pseudo-operation in shared linkage. Such IPs can never be modified under any
circumstances. If you wish to create a modifiable IP, use the MIP
pseudo-operation. IPs created with MIP are placed in per-user linkage, so they
may be modified.
Similarly, you cannot assume adjacency of IPs in shared linkage. BIND may in
fact move the IPs. For example, a PMA program may set up several IPs contigu
ous in the data frame to be used as a jump table to a set of routines or common
areas. One would set up an index into this table of IPs to find the desired object.
This type of table must remain in the per-user linkage to guarantee adjacency of
its IPs. Use the MIP pseudo-operation to create these IPs.

Second Edition A-15

Obsolete Binary Editors
B

LIBEDB

This appendix describes the Binary Editor (EDB) and the Library Editor
(LIBEDB). Both of these editors have been replaced by the more powerful
EDITJBINARY binary editor. EDIT_BINARY is described in Chapter 9.
EDB and LIBEDB are still supplied with PRIMOS, but their continued
use is discouraged.
EDB is used to create and modify binary libraries. LIBEDB is used once
a binary library is created to decrease linking or loading time. Both of
these programs operate on object code files generated by Prime language
translators such as F77, FTN, CBL, PL1G, PMA, and so on. These
object-text blocks form the input to BIND, LOAD and SEG.

The LIBEDB program is used for editing bypass information into library
files. The BIND linker uses the bypass information to skip an unnecessary
routine efficiently instead of reading and discarding all the unwanted
object text. Depending on the size and number of unnecessary routines in
a library, BIND may process library files up to 50 percent faster if they
have first been processed by LIBEDB.
LIBEDB is maintained as the runfile LIBEDB.SAVE in the LIB directory.
You should use LIBEDB on a library file after the library's creation and

after each time that the library is edited with the Binary Editor. The
linker is capable, however, of handling a library which is not, or is only
partially, processed by LIBEDB.
Because it is expected that LIBEDB will be used fairly infrequently, the
user/computer interaction is self-explanatory. A sample LIBEDB session
is shown at the end of this appendix. LIBEDB asks for an input and
output filename and for a file type. In theory, a library containing large
routines will link faster if it is created as a Direct Access Method (DAM)
file. In practice, none of the regularly used libraries contain routines large
enough to warrant creating the library as a DAM file instead of as a
Sequential Access Method (SAM) file.

Second Edition B-1

Advanced Programmer's Guide I: BIND and EPFs

EDB

The command format for EDB is

EDB
inputjile
-ASR
-PTR

▶ [output file]

Both the input and output file may be pathnames. The input file should
be an existing library or the binary output of a Prime language translator.
The output file is optional; if specified, a file of that name is created if
none exists. -ASR or -PTR instead of a filename on the command line
specifies a user terminal or paper tape reader/punch, respectively. If these
are not included, a PRIMOS file is assumed. (-ASR and -PTR are
obsolete options.)
EDB displays enter, and then waits for user commands.

Operation
EDB maintains a pointer to the input file. When EDB is initialized, or
after a TOP or NEWINF subcommand, the pointer is at the top of the
input file. The pointer can be moved by the FIND subcommand to the
start of a module. A module is identified by its subprogram or entrypoint
name. After a COPY subcommand (which copies blocks from the input to
output file), the pointer is positioned to the module following the module
copied.

Subcommand Summary
EDB responds to the following subcommands, listed in alphabetical order.

Note The keyword ALL, used in the COPY and FIND subcommands, is not specially
treated by EDB; if the external symbol name ALL is encountered in the input file,
the COPY or FIND operation is terminated. This distinction is important only for
input files that contain an external symbol name of ALL; in such a case, use some
random name instead of ALL to COPY or FIND all modules in an input file, such
as FDSA. The ALL keyword is essentially an ad hoc standard.

B-2 Second Edition

Obsolete Binary Editors

BRIEF

Inhibits the display of subroutine names and entrypoints as they are
encountered in the input file. (See also TERSE and VERIFY.)

COPY
C

name
ALL
< RFL >
< SFL >

Copies to the output file all main programs and subroutines from the
pointer up to (but not including) the subroutine called name or containing
name as an entrypoint. If name is not encountered or if COPY ALL is
specified, EDB copies to the end of the input file and displays .BOTTOM,
on the terminal. EDB moves the pointer past the last copied item.
<RFL> and <SFL> are special keywords that search for a
reset-force-load or set-force-load flag block.

FIND
F

name
ALL
< RFL >
< SFL >

Moves the pointer up to the module of the input file containing a
subroutine called name or containing name as an entrypoint without
copying the intervening modules to the output file. If name is not found,
EDB moves the pointer to the end of the input file and displays
.BOTTOM, on the terminal.
In VERIFY mode, the FIND ALL command is useful for displaying all
subroutines and entrynames in the input file.
<RFL> and <SFL> are special keywords that search for a
reset-force-load or set-force-load flag block.

INSERT pathname

Copies all modules oi pathname to the output file. The pointer to the
original input file is unchanged.

Second Edition B-3

Advanced Programmer's Guide I: BIND and EPFs

NEWINF pathname

Closes the current input file and opens pathname as the new input file. The
pointer is positioned to the beginning of pathname.

OPEN

Closes the current output file and opens pathname as the new output file.

QUIT
Q

Closes all files and exits to PRIMOS.

REPLAC name pathname
R

Replaces the object module containing name as an entrypoint by all
modules of pathname.

RFL

Writes a reset-force-load flag block to the output file. Typically, all
libraries begin with an RFL. The RFL block places a linker in library
mode; while in library mode, only those modules that are referenced are
linked. RFL mode is in effect until the linker encounters an SFL block.

Note Because an RFL block affects other files linked after the object file containing the
RFL block, it is important that any object file containing an RFL block contain an
SFL block at the end of the file. See the SFL command.

SFL

Writes a set-force-load flag block to the output file. This block places a
linker in force-load mode; all subsequent modules are linked, whether or
not they are called. SFL mode is in effect until the linker encounters an
RFL block. A library file should be terminated by an SFL block.

B-4 Second Edition

Obsolete Binary Editors

TERSE

Places the editor into TERSE mode. While in TERSE mode, EDB
displays only the first entrypoint name of each module encountered. (See
also BRIEF and VERIFY.)

TOP
T

Moves the pointer to the top of the input file.

VERIFY

Places EDB into VERIFY mode. All subroutine names and entrypoints,
as they are encountered by EDB, are displayed on the terminal. EDB is
initialized in VERIFY mode. (See also BRIEF and TERSE.)

Obsolete Commands
The following commands are outmoded but are included for the sake of
compatibility:

ET

Writes an end-of-tape mark on the output file ('223, '223 on paper tape; 0
word on disk). Writing an ET to disk causes the linker to ignore the
remainder of the file.

GENET [G]
G

Copies the subroutine to which the pointer is currently positioned and
follows it with an end-of-tape mark. The pointer moves to the next
subroutine. The optional letter G specifies a global copy; all subroutines
from the current position of the pointer are copied, each followed by an
end-of-tape mark. When the bottom of the input file is encountered, EDB
displays .BOTTOM, on the terminal.

Second Edition B-5

Advanced Programmer's Guide I: BIND and EPFs

OMITET [G]
O

Examples

Copies the subroutine to which the binary location pointer is currently
positioned. The pointer moves to the next subroutine.The optional letter
G specifies a global copy; all subroutines from the current position of the
pointer are copied. When the bottom of the input file is encountered,
EDB displays .BOTTOM, on the terminal.

EDB Error Messages

EDB displays ENTER to show that it is ready to accept commands. Most
errors in command input cause EDB to display a question mark (?). Other
messages are listed below.

BAD OBJECT FILE (FRDBIN)

Usually indicates that you have specified a source file, rather than an
object (.BIN) file, as the input file. EDB attempts to continue
processing by ignoring the remainder of the input file.

BAD PARAMETERS (EDB)

Indicates an error while locating an input file, an output file, or a
replace file; or, indicates an erroneous usage of EDB. EDB terminates.

ERROR WHILE WRITING

A file system error occurred while EDB was trying to write the contents
of an object file. EDB terminates.

Creating a Library of Subroutines
The following example creates a library from the files FILE1.BIN,
FILE2.BIN, FILE3.BIN, and FILE4.BIN. Each file contains a single
module, although FILE1.BIN and FILE2.BIN contain multiple entrypoints.
The example shows the EDB commands to list the entrypoints of each file,
plus the commands necessary to combine them into a library file,
LIBEXP.BIN.

B-6 Second Edition

Obsolete Binary Editors

OK, EDB FILE1.BIN
[EDB Rev. T3.0-23.0 (c) 1990, Prime Computer, Inc.]
ENTER, FIND ALL
E N T 1 A E N T 1 B
ENT1C

.BOTTOM.
ENTER, NEWINF FILE2.BIN
ENTER, FIND ALL
E N T 2 D E N T 2 E

.BOTTOM.
ENTER, NEWINF FILE3.BIN
ENTER, FIND ALL
ENT3G

.BOTTOM.
ENTER, NEWINF FILE4.BIN
ENTER, FIND ALL
ENT4H

.BOTTOM.
ENTER, OPEN LIBEXP.BIN

ENT1B

ENTER, NEWINF FILEl. BIN
ENTER, RFL
ENTER, COPY ALL
ENT1A
ENT1C

.BOTTOM.
ENTER, INSERT FILE2 .BIN
ENTER, INSERT FILE3 .BIN
ENTER, INSERT FILE4 .BIN
ENTER, SFL
ENTER, QUIT
OK,

After a library is created, LIBEDB can be run on it to speed its linking
time.

Displaying Entrypoints

Notice the difference between the terminal output in VERIFY and TERSE
modes. ENT5A and ENT6A are both entrypoints of the module in the file
FILE5.BIN; ENT5A is the name of the procedure, ENT6A is the name of
an alternate entrypoint to the ENT5A procedure. In TERSE mode, only

Second Edition B-7

Advanced Programmer's Guide I: BIND and EPFs

ENT6A is listed. (The compiler in this case emits the external name for
the alternate entrypoint before it emits the external name for the
procedure; therefore, ENT6A is listed first.) For example,

OK, EDB FILE5.BIN
[EDB Rev. T3.0-23.0 (c) 1990, Prime Computer, Inc.]

ENTER, FIND ALL
E N T 6 A E N T 5 A

.BOTTOM.
ENTER, TOP
ENTER, TERSE
ENTER, FIND ALL
ENT6A

.BOTTOM.
ENTER, QUIT
OK,

Replacing an Object Module in the Library
The library file created above, LIBEXP.BIN, is edited to replace the
module containing entrypoint ENT3G with the module in NFILE3.BIN
containing entrypoint ENT3F and ENT3G. The output file is
LIBNEW.BIN.

OK, EDB NFILE3.BIN
[EDB Rev. T3.0-23.0 (c) 1990, Prime Computer, Inc.]

ENTER, FIND ALL
E N T 3 F E N T 3 G

.BOTTOM.
ENTER, QUIT
OK, EDB LIBEXP.BIN LIBNEW.BIN
[EDB Rev. T3.0-23.0 (c) 1990, Prime Computer, Inc.]
ENTER, REPLAC ENT3G NFILE3.BIN
< R F L > E N T 1 A
E N T 1 B E N T 1 C
E N T 2 D E N T 2 E
ENT3G
ENTER, COPY ALL
E N T 4 H < S F L >

.BOTTOM.
ENTER, QUIT
OK, EDB LIBNEW.BIN
[EDB Rev. T3.0-23.0 (c) 1990, Prime Computer, Inc.]
ENTER, FIND ALL

B-8 Second Edition

Obsolete Binary Editors

< R F L > E N T 1 A
E N T 1 B E N T 1 C
E N T 2 D E N T 2 E
E N T 3 F E N T 3 G
E N T 4 H < S F L >

.BOTTOM.
ENTER, QUIT
OK,

Sample Use of LIBEDB

In this example, the file LIBEXP.BIN is processed by LIBEDB, producing
a SAM file named FAST_LIBEXP.BIN.

OK, RESUME LIB>LIBEDB
[LIBEDB Rev. T3.0-23.0 (c) 1990, Prime Computer, Inc.]
SOURCE FILE, DESTINATION FILE, PARAMETER
WHERE: PARAMETER = 0 - DESTINATION FILE SAM

PARAMETER = 2000 - DESTINATION FILE DAM
$ LIBEXP.BIN,FAST_LIBEXP.BIN,0
0K~

Second Edition B-9

EPFs and Static-mode
Applications

If you are still maintaining static-mode applications on your system, this
appendix contains useful information about two issues:

• Maintaining static-mode applications in a dynamic environment
• Converting static-mode applications to EPFs

In general, Prime recommends that you convert static-mode applications to EPFs
in order to take full advantage of the flexible environment and ease of
maintenance you get with EPFs. With the introduction of registered EPFs, all
the performance and functionality of shared static-mode programs is now
available with EPFs.

Static-mode Applications in a Dynamic Environment

With the introduction of EPFs at Rev 19.4, PRIMOS was enhanced to provide a
dynamic command environment that takes full advantages of the capabilities of
EPFs. Although Rev. 19.4 and later versions of PRIMOS are highly backward
compatible, you need to be aware of two issues if you run static applications
under these later revisions:

• Restrictions on static-mode invocations
• Restrictions on static-mode applications that share IPs

Restrictions on Static-mode Invocations
The dynamic command environment stores information about the state of
multiple program invocations on the command stack. Since EPFs are placed in
memory dynamically, newer invocations do not overwrite older invocations. As
a result, PRIMOS can use the state information saved on the command stack to
reinvoke suspended EPFs.
Suspended static-mode programs are also maintained on the command stack.
However, PRIMOS does not dynamically allocate memory for static-mode

Second Edition C-1

Advanced Programmer's Guide I: BIND and EPFs

programs, so newer invocations may overwrite old ones. Therefore, your ability
to restart suspended static-mode applications is more restricted than with EPFs.
You encounter this restriction when you suspend a static-mode application and
then invoke another static-mode application. If you later try to reinvoke the first
invocation, PRIMOS displays the error message

Attempt to proceed to overwritten program image.

Once a static-mode program has been overwritten in this way, it cannot be
recovered.
This is generally a problem for naive users of static-mode programs since they
can invoke and suspend static-mode programs and EPFs in exactly the same
way. Such users may not be aware that some of the programs they are invoking
are static-mode programs and may be surprised to find that they cannot always
be started. As a programmer you should be aware of this restriction if you
maintain static-mode programs on a system. You should consider converting
your static-mode applications to EPFs in order to take full advantage of the
dynamic command environment.

Static-mode Programs That Share Linkage
Static-mode programs that share linkage may not run correctly under Rev. 19.4
or later PRIMOS.
System Administrators often place widely used static-mode programs in shared
segments (using the SHARE command). Normally, such shared programs place
pure code in the shared segments and impure linkage and data in per-user static
segments. The linkage and data are not shared because each user needs a private
copy that can be changed by the user's invocation of the program without
affecting other users' invocations. Such programs should run without problems
on Rev. 19.4 or later systems.
Some static-mode programs also share part of their linkage. Such programs place
faulted IPs in shared rather than per-user segments. IPs can be shared in this
way as long as they reference routines with fixed locations that are the same for
all users, such as PRIMOS entrypoints and subroutines in shared static-mode
libraries. Since they reference routines that have the same addresses for all
users, these IPs don't need to be snapped separately for each user. They can be
placed in shared segments and snapped just once for all users.
The shared dynts in such programs are usually snapped in one of two ways:

• At startup time, after the application is shared, a special program is run that
snaps the dynts.

C-2 Second Edition

EPFs and Static-mode Applications

• When the application is shared, the shared linkage segments are not
protected against modification (the segment protection value is set at 700s).
This allows the first invocation of the program to snap the dynts.

Sharing linkage in this way reduces the working set of an application and may
increase execution speed by avoiding dynt snapping. However static-mode
programs with such shared linkage may not run correctly on Rev. 19.4 or later
systems. The routines referenced by shared IPs in such programs may now be in
dynamic library EPFs rather than in static-mode libraries. This can cause such
programs to fail when they attempt to reference these routines.
Dynamic library EPFs do not have a fixed memory location that is the same for
all users. The dynt snapping mechanism maps dynamic library EPFs into
available segments in each user's private address space. These locations may be
different for each user. Therefore, an IP that correctly points to a library routine
in one user's address space may point to the wrong location for another user.
Such an IP cannot be shared among all users. When users attempt to run a static
shared programs that contain shared IPs to routines in dynamic library EPFs,
they are likely to encounter illegal segment number, access violation, or pointer
fault errors.
You can resolve this problem in two ways:

• Convert the static-mode program to a registered EPF.
• Modify the static-mode program so that it no longer shares faulted IPs.

Converting to a Registered EPF: If you feel that the advantages of shared
linkage are beneficial to your program, you should consider converting it to a
registered EPF. This is the recommended procedure. Registered EPFs give you
all the performance benefits of shared static-mode applications, including shared
linkage, in a fully dynamic environment. As an EPF your program is also easier
to maintain and install than a shared static-mode program which may require a
complex build sequence every time it is modified. The section, Converting From
Static-mode Programs to EPFs, gives you general conversion guidelines.
Chapter 6, Registered EPFs, shows you how to build a registered EPF with
BIND.

Modifying an Application Not to Share Faulted IPs: If you want to
maintain your application as a shared static-mode program and have it run
correctly under Rev. 19.4 or later PRIMOS, you must rebuild it so that it does
not share IPs.
To modify an application so that it does not share faulted IPs, you must either
change its load sequence so that shared segments are used to contain only
procedure code and other constant data, or you must load all of the subroutines it
needs into the same application, including those in Prime-supplied libraries.

Modifying the Load Sequence: Modifying the load sequence of an
application so that it does not share IPs is the safest approach. It involves

Second Edition C-3

Advanced Programmer's Guide I: BIND and EPFs

changing the load sequence so that only pure code (procedure code) is placed in
shared segments and disabling special-purpose programs that snap faulted IPs at
coldstart for the application. For example, a CPL program that builds such an
application (via SEG) might contain the following line:

S/LOAD MODULEl 0 2035 2035

The second 2035 in the command line specifies that linkage information
(including IPs and the ECB) is to be placed in segment 2035, a shared segment.
Modify this line, and lines like it, to place the linkage information in nonshared
segments, such as segment 4000. For example,

S/LOAD MODULEl 0 2035 4000

Then modify the load sequence for your application so that it performs no
processing of the .SEG file, program map, or object files for the purposes of
gathering information on the locations of faulted IPs. (Because Prime provides
no program for doing this, an example of this cannot be documented here; it is
expected that each development group that has built an application that shares
IPs has also built its own tools to find faulted IPs.) An application may have no
such program, if it leaves shared segments unprotected against user modification.
Finally, find the portion of the system startup file, PRIMOS.COMI (or
C_PRMO), that shares the application and modify it so that it no longer runs a
program to snap faulted IPs in the shared segment images of the program. If
your application has no such program, modify the system startup file to set the
protection for shared segments to 600 (read and execute) rather than 700 (read,
write, and execute).
Loading In All Subroutines: An alternate solution is to load in the actual
code of all dynamically-linked subroutines used by your application. That is,
load all subroutines used by your application that reside in dynamic library EPFs
directly into your application. Load the actual code of these subroutines, not
dynamic links to the subroutines.
This solution has the disadvantage of increasing the size of your application
while duplicating the extra subroutines loaded; other applications will he unable
to access the copies of those subroutines loaded into your application, and will
instead use the copies in the library EPFs. However, as the size of your
application generally affects only the coldstart initialization time, performance
should not be reduced. However, you must load in the unshared versions of all
libraries that your application references. For example, in a particular
application that uses the Pascal library, the load sequence might contain

D/LIBRARY PASLIB
D/LIBRARY

C-4 Second Edition

EPFs and Static-mode Applications

Replace these statements to load in the unshared versions of the libraries. The
default libraries loaded in via a LIBRARY command with no filename are
SPLLIB, PFTNLB, and IFTNLB; the unshared versions are NSPLLIB and
NPFTNLB. (IFTNLB has no unshared counterpart; it is included in NPFTNLB.)
The corresponding statements for the above sample section of a load sequence
would therefore read

D/LIBRARY NPASLIB
D/LIBRARY NSPLLIB
D/LIBRARY NPFTNLB
D/LIBRARY

Note that the D/LIBRARY command, with no filename, is still given at the end;
it results in the loading of dynts to static entrypoints (entrypoints into PRIMOS
and entrypoints residing in static-mode libraries).

Converting From Static-mode Programs to EPFs
Converting a static-mode program to an EPF is usually a straightforward
process. For programs written in high-level languages, if the program was
compiled in either V-mode or I-mode, you can usually convert it to an EPF
simply be rebuilding with BIND. If the program is in R-mode, you must first
compile it in V-mode or I-mode. Depending on the compiler, this may require
source code changes. PMA programs may also require source code changes.
Appendix A tells you how to write EPFs in PMA.
EPFs That Call Static-mode Libraries: If you write an EPF that calls
subroutines in static-mode libraries, it cannot be suspended and reinvoked as
freely as an EPF that does not call static-mode libraries. The restriction is much
like the restriction on restarting static-mode programs. It occurs when you
invoke an EPF that calls a static-mode library, suspend the program, and then
invoke another program that calls the same library. If you attempt to restart the
first program, PRIMOS displays the error message

Attempt to proceed to overwritten program image.

This restriction occurs because PRIMOS initializes the linkage area of a
static-mode library once per program invocation. Since static-mode libraries are
always loaded into the same area of memory, only one copy of a static-mode
library can be maintained in a user's address space. This means that later
invocations reinitialize the same linkage/data area that was used by earlier
invocations. This corrupts the library linkage/data area of the earlier invocation.
PRIMOS detects this condition and prevents the earlier invocation from being
restarted.

Second Edition C-5

Advanced Programmer's Guide I: BIND and EPFs

This is mainly a problem for naive users who are not aware that they have
invoked a static-mode library. As a programmer, you should try to avoid calling
static-mode libraries from EPFs if you want your EPFs to take full advantage of
the dynamic command environment.

Rewriting Build Sequences
Once you have a program that can be built as an EPF, rebuilding it with BIND is
usually a straightforward process. You simply load the program and any
required libraries as described in the Programmer's Guide to BIND and EPFs. If
you are building a registered EPF, follow the guidelines given in Chapter 6 of
this book, Registered EPFs.
If you previously built the program using a SEG build sequence, convert that
sequence to a BIND build sequence. A BIND build sequence is considerably
simpler than the equivalent SEG build sequence. Instruction for converting an
old SEG build sequence to BIND are found in the Programmer's Guide to BIND
and EPFs.

Converting Programs That Use Register Settings
Some existing static-mode programs use register settings to select options for the
program. Register settings set the initial values of R-mode and V-mode registers
for static-mode programs by setting values in the RVEC (Register VECtor) for
the user. (See the PRIMOS Commands Reference Guide for more information on
RVEC and register settings.)
While using register settings to select program options is obsolete, having been
replaced by the more legible and flexible command line options (such as
-LISTING, -XREF, and so on), register settings do offer the advantage of being
able to change the default options for a program without having to recompile or
reload it.
For example, to change the register settings for a program named NRSL, you
might type

RESTORE NRSL.SAVE
SAVE NRSL.SAVE 3/14520

This command sequence would change the initial value of the A register for
NRSL from its original value of 120 to 14520. This might have the effect of
enabling more options by default; users subsequently invoking the program
would not have to specify those options.
Converting such a program to an EPF might seem difficult at first, because this
feature is not directly supplied by BIND and EPFs. However, a feature exists

C-6 Second Edition

EPFs and Static-mode Applications

that is easier to use with BIND and EPFs and that may be a suitable replacement.
This appendix shows how to use this feature to provide a somewhat compatible
interface for setting the initial values of registers.

How Static-mode Programs Use Registers
The key to the use of initial values for registers by a static-mode program is that
its first instructions that reference the appropriate registers must not initialize
them before using them, because the command processor has already initialized
them. Their values are stored in the first nine halfwords of the static-mode
runfile containing the program. The first two of these halfwords are the
beginning and ending addresses for the program's memory image; the third
halfword is the starting location of the program (the initial value of the P
register); and the next four halfwords contain the initial values for the A, B, X,
and K registers. The remaining two halfwords are undefined and should be 0.
Therefore, the main entrypoint of a static-mode program that utilizes initial
values of one or more registers usually begins with a STA, STL, or STX
instruction if written in PMA, or with a call to the GETA or GETL subroutine if
written in FTN. (GETA stores the value in the A register into the INTEGER*2
argument passed to it, while GETL stores the value in the L register, which is the
A and B registers concatenated, into the INTEGER*4 argument passed to it.)
The main entrypoint uses the values retrieved from the registers as the initial, or
default, values for option settings in the program. Typically, the program then
reads options from the command line, recording any options it finds there on top
of the initial option settings. (Thus, command line options, when specified,
override the initial values.)
In addition, the user may use register settings on the command line (such as
RESUME NRSL 3/10120) instead of command line options. The use of this
obsolete method of specifying program options is guaranteed to confuse and
bewilder anybody who tries to understand the command file written by the user
to invoke the program. (Such a user rarely builds a CPL program for the
purpose.) These register settings, when specified on the command line, override
the settings in the RVEC for the static-mode program image, and hence replace
the initial values for the registers.

How to Achieve This Functionality in an EPF
To make the default options for an EPF tailorable on a per-system basis, you
build a CPL program that replaces the RESUME/SAVE command sequence
shown at the beginning of this appendix; in addition, you convert your
static-mode program by changing the way it obtains the initial values of the
registers.

Second Edition C-7

Advanced Programmer's Guide I: BIND and EPFs

The CPL Program: The CPL program performs the following tasks:

1. It determines the default options desired by the user, either by accepting the
baroque register settings used for the static-mode version of the program or
by reading command line options typed by the user.

2. It compiles a small FTN subroutine called NGETA or NGETL that stores
the numeric equivalents to the desired default options into the passed
argument, either an INTEGER*2 (NGETA) or an INTEGER*4 (NGETL)
argument.

3. It invokes BIND and links the EPF using the subcommand LOAD
program.RUN.

4. It uses the RELOAD subcommand to relink the NGETA or NGETL
subroutine just compiled into the EPF just linked.

5. It uses the FILE subcommand to write to disk the new version of the EPF
with modified default options.

Converting the Static-mode Program: You also convert your static-mode
program to obtain the initial values for the registers by calling a subroutine
named NGETA or NGETL, depending upon whether the program uses the initial
value for the A register or for both the A register and the B register.
Then, you write a subroutine named NGETA or NGETL in FTN that you link
with your program. The subroutine sets the passed number to the standard
default option settings as numbers and returns to the caller.
The Result: The result you have is a program EPF that obtains its initial
register values by calling NGETA or NGETL, an internal subroutine that returns
standard values for the registers in the argument provided. The rest of your
program operates as it did before.
If someone wishes to tailor your program for their needs, they need only invoke
the CPL program you have supplied. It obtains the desired default options from
the user, and compiles a new version of NGETA or NGETL that supplies the
new initial values instead of the standard values. The CPL program then relinks
the newly compiled NGETA or NGETL module into the existing EPF, and now
that program EPF uses the new defaults.
A Sample Case: A sample CPL program that performs this conversion,
along with the corresponding copy of NGETA and NGETL, follows.

Sargs prog:tree; areg:oct=120

&if [null %prog%] -then Sreturn 1 &message Requires
program name.

&if [index %prog% .RUN] A= [calc [length %prog%] - 3] ~
Sthen &s prog := %prog%.RUN

&data ed

C-8 Second Edition

EPFs and Static-mode Applications

SUBROUTINE NGETA(I)
INTEGER*2 I
I=:%areg%
RETURN
END

FILE NGETA.FTN
Send

ftn ngeta -dynm -dclvar

bind -load %prog% -reload ngeta

dele te ngeta.b in

The oct=I20 value in the first line simply sets the default value for the initial A-
register setting if the user does not specify it. It should be the same value with
which you ship the program EPF.
As you can see from the above sample CPL program, the sample NGETA.FTN
module is quite simple:

SUBROUTINE NGETA(I)
INTEGER*2 I
I = : v a l u e
RETURN
END

Here, value is the standard initial A-register value. The NGETL.FTN module is
as follows:

SUBROUTINE NGETL(L)
INTEGER*2 L(2)
L (l) = : v a l u e l
L (2)= : va l ue2
RETURN
END

Here, valuel and value2 are the standard initial A-register and B-register values,
respectively. If your program expects an initial value for the B register, you
should use the copy of NGETL shown above and modify the CPL program
shown earlier accordingly. (For example, it should take two octal arguments,
one for the A register and one for the B register.)
If the Main Entrypoint Is a PMA Program: If the main entrypoint of your
program is written in PMA, then you must change the STA or STL instruction at
the beginning to a CALL NGETA or CALL NGETL followed by AP
INIT_REG_SETTING,SL (where INIT_REG_SETTING was the target of the
STA or STL instruction). If the program also expects an initial value for the X

Second Edition C-9

Advanced Programmer's Guide I: BIND and EPFs

register, add a third octal argument to the CPL program and a second argument
to NGETL to pass the X-register value, and call NGETL with a second argument
from the PMA module that stores the value returned in the second argument in
the destination of the original STX instruction.
If the PMA program does not start off with STA, STL, or STX instructions, but
instead uses instructions that test the registers in various ways (such as SAR,
SAS, BEQ, CAS, and so on), simply insert the call to NGETA or NGETL in
front of the instructions, then code a LDA, LDL, or LDX instruction to load the
registers with the initial values retrieved from NGETA or NGETL.

C-10 Second Edition

A List of Registered Library
EPFs

Prime supplies the following library EPFs as registered library EPFs.

SYSTEM_LIB$PRC.RUN
SYSTEM_LIB$PRG.RUN
TRANS_LIB$PRC.RUN
TRANS_LIB$PRG.RUN
COMMON_ENVELOPE.RUN
FTNJLIBRARY.RUN
APPLICATION_LIBRARYRUN
CC_LIBRARYRUN
ANSI_CC_LIBRARY.RUN
MATRIX_LIBRARY.RUN
COBOL85_LIBRARY.RUN
CBL_LIBRARY.RUN
PASCAL_LIBRARY.RUN
PL1_SYSTEM_LIBRARYRUN
PL1_LIBRARY.RUN
PL1G_LIBRARY.RUN
VRPG_LIBRARY.RUN

Second Edition D-1

Index

Index

Symbols
$, in subroutine names, 5-14
+, segment addresses, 8-1
- segment addresses, 8-1

Access rights
program EPFs, 4-5
registered EPFs, 6-26

ACCESS_VIOLATION$ condition,
static-mode program, C-3

Addresses (of EPFs). See Imaginary
addresses; Segment addresses

ALC$RA subroutine, 3-7
ALSSRA subroutine, 3-7
Assembly language. See PMA assembly

language

B
.BIN files. See Binary files
Binary file editors

EDB, B-2
EDITBINARY, 9-1
LIBEDB, B-l

Binary files, 1-5
Binary libraries, 6-9, 9-1

advantages of, 5-20
creating, 5-4,5-20, B-l
definition, 5-3,9-1
filename, 9-4,9-7
installing in file system, 5-20
introduction, 1-5
linking to with BIND, 5-4
listing contents, 9-8
loading during BIND, 6-10
loading multiple, 9-8,9-9

location of, 5-4
old (pre-Rev. 23.0), 6-10,6-14
Prime-supplied, 6-10,9-3
setting dynt types, 6-9
user-created, 6-10

BINARYS search list
setting, 9-4
used by BIND, 1-5
used by EDIT_BINARY, 9-9

BIND linker, 1-5
ALLOCATE subcommand, 6-16, 7-3,

7-14
building a library EPF, 5-17
building a program EPF, 3-2,4-3
building a registered EPF, 6-6, 6-14
CHANGE_SYMBOL_NAME

subcommand, 5-19
DEFAULT_DYNT_TYPE

subcommand, 6-8
defaults, 4-3
DYNT subcommand, 3-3,5-20, 6-8
ENTRYNAME subcommand, 5-13,

5-18,5-19
external reference handling, 3-3
FILE subcommand, 5-17
INTT.ENTRY subcommand, 6-14,

7-14
LIBMODE -PROCESS subcommand,

5-18
LIBMODE -PROGRAM

subcommand, 5-17
LIBMODE -REGISTER subcommand,

6-7
LIBMODE subcommand, 5-7
LIBRARY PROCESS_CLASS

subcommand, 5-13,5-18
LIBRARY subcommand, 5-4,5-19,

5-21,6-10
LOAD subcommand, 5-4, 5-18, 5-21

6-10

MAIN subcommand, 3-3,4-3,4-4,
A-8

MAP subcommand, 5-18, 6-21,8-4
8-5

PROGMODE -REGISTER
subcommand, 6-7

rebuilding for change to static
segments, 7-5

RESOLVE_DEFERRED_COMMON
subcommand, 5-18

SYMBOL subcommand, 7-5, A-10,
A - l l

Building EPFs. See BIND linker

C language
entrynames G$ prefix, 5-14
IX-mode, 4-3,5-14
supporting registered EPFs, 6-4

Called routines
in runtime libraries, 3-3
in static-mode libraries, C-5
loaded during BIND session, 3-3

Calling routines
instruction used, 2-3
library class restrictions, 5-8
multiple calls to, 3-6
PMA language, A-5

Cold start
effects of corrupt ENTRYS, 5-22
registering EPFs, 6-17

Command levels
EPF linkage areas, 3-7
static-mode programs, C-l

COMMANDS search list
multiple EPF versions, 6-27
program EPFs, 4-5

Second Edition X-1

Advanced Programmer's Guide I: BIND and EPFs

COMMANDS search list (Continued)
-PUBLIC, 6-25
registered EPFs, 6-25, 6-27

Common areas
allocating dynamically, 7-2
coding access to, 7-3
creating, 7-3
listing, 9-8
location, 6-4
mapping, 8-5
mapping locations, 5-18
PMA language, A-6
sharing, 6-15, 7-2

Common blocks. See Common areas
Compiler modes, PMA language, A-9
Compiling

dynamic program EPFs, 3-2
modes, 4-3
recompiling old programs, 6-4

CPS subroutine, 4-2,6-27

DAM files
EDITJBINARY output, 9-5
LIBEDB output, B-l

Data frame, 6-4
Data segments. See Linkage/data

segments
Default dynts

See also Dynts
binary files, 6-11
during BIND linking, 6-9
in binary libraries, 6-9
setting binary library default, 9-6
setting for binary library, 9-7,9-10

Descriptor Table Address Registers. See
DTARs

Disk I/O, registered EPFs, 6-2, 6-21
DTARs

description, 2-6
registered EPFs, 2-6, 6-21

DUMP_STACK command
example, 8-10
stack frame addresses, 8-9

Dynamic EPFs
See also Dynts
compared to registered EPFs, 6-2
data initialization, 6-14

dynt types, 2-1
introduction, 1-2
mapping, 2-5
memory map, 8-4
pure procedure segment addresses, 8-2,

8-4
segment allocation, 2-4
sharing, 2-6

Dynamic library EPFs
See also Dynts
dynt types, 6-7,6-11
mapping by user process, 3-8
phases of, 3-8
snapping a dynt to, 3-9
when mapped, 3-8

Dynamic links. See Dynts
Dynamic program EPFs

See also Dynts
phases of, 3-1

Dynt types
BIND commands, 6-8
changing binary library types, 6-9
checking, 6-13
EDIT.BINARY READ subcommand,

6-12
listing, 9-8
pre-Rev. 23.0,6-10
Prime-supplied binary libraries, 6-10
setting binary library default, 9-6
setting for binary library, 9-7
setting for registered EPFs, 6-7
setting in binary libraries, 6-9
table, 6-8
user-created binary libraries, 6-10

Dynts
See also Default dynts; EPFs; Per-user

dynts; Shared dynts; Snapping
dynts

creating, 3-3
description, 2-2
discussion, 2-1
external routines, 2-1
in binary libraries, 5-3
internal routines, 2-1
IPs, 2-2
listing, 9-8
uncalled routines, 3-6
unsnapped, 6-23

EAXB instruction, 8-11
ECBs. See Entry Control Blocks
ED editor, unusable, 5-22
EDB binary file editor, B-2
EDIT_BINARY binary file editor, 9-1

command syntax, 9-1
DEFAULT_DYNT_TYPE

subcommand, 6-11,9-6
DYNT subcommand, 6-11,9-7
example, 9-2
examples, 6-13
EXTRACT subcommand, 9-7
LIBRARY subcommand, 9-8
LIST.CONTENTS subcommand,

6-13,9-8
LOAD subcommand, 9-9
options, 9-4
READ subcommand, 6-12, 9-10
setting dynt types, 6-11
subcommands, 9-5

EMACS editor, unusable, 5-22
Entry Control Blocks

actual address of, 8-6
actual location of, 3-3
compiler initilization, 3-2
dynamic program EPFs, 3-2
for main entrypoint, 3-6
imaginary address of, 8-5
imaginary addresses in, 3-2
in procedure text, A-10
location, 6-2
not used, 2-2
PBECB compiler option, 4-3
PMA language, A-4, A-12
pointer to, 2-2

ENTRYS search list
See also Search lists
corrupted, 5-22
default search rules, 5-5
mapping dynamic library EPFs, 3-8
-PRIMOS_DIRECT_ENTRIES, 5-5
-PUBLIC, 5-5,6-25
registered EPFs, 6-25
resolving dynamic links, 5-4
searching, 2-2
setting, 5-22

X-2 Second Edition

Index

ENTRYS search list (Continued)
setting user's search list, 5-23
-STATIC_SHARED_LIBRARIES, 5-5
user's library EPFs, 5-21
user's search rules, 5-5

Entrynames
duplicate, 6-25
listing, 9-8

Entrypoint tables
definition, 2-2
mapping library EPF to search, 3-8
pointers to ECBs, 2-2
pointers to entrypoints, 2-2

Entrypoints
defining main entrypoint, 4-3
discussion, 5-13
excluding, 5-13
listing, 6-25
naming error during BIND, 5-19
pointers to, 2-2
procedure, 3-4
renaming during BIND, 5-19
specifying in BIND, 5-18
unresolved, 6-23

EPF cache, description, 3-7
EPF libraries. See Library EPFs
EPF performance

See also EPFs
avoiding registrable EPFs, 6-16
changing ENTRYS search lists, 5-5
dynt types to registered libraries, 6-7
library class, 5-8
rebuilding old binary libraries, 6-10,

6-14
registered EPFs, 6-2
registered library EPFs, 6-5
selecting compiler, 6-5
setting DTAR2 segments, 2-6
setting paging disk size, 6-21
static-mode shared linkage, C-3
very large program EPFs, 4-3

EPFS subroutines, 3-4
calling program EPFs, 4-2
calling registered EPFs, 6-27

EPFSALLC subroutine, 3-5
EPFSDEL subroutine, 3-8
EPFSINTT subroutine, 3-6, A-12
EPFSINVK subroutine, 3-6

returning to, 3-7

EPFSISREADY subroutine, 6-25
EPFSMAP subroutine, 3-5
EPFSREG subroutine, 6-17
EPFSUREG subroutine, 6-21
EPFs

See also Dynamic EPFs; EPF
performance; Library EPFs;
Program EPFs; Registered EPFs;
Registering EPFs; Registrable
EPFs

addressing static segments, 7-5
building. See BIND linker
creating (overview), 1-4
debugging, 8-7
definition, 1-1
executing, 1-6,6-27
invoking, 1-6
library EPFs, 5-1
mapping, 2-6
memory templates, 2-5
naming routines, 5-6
procedure invocation, 3-5
procedures in, 3-4
program EPFs, 4-1
program invocation, 3-5
re-executing, 3-7
reinvoking, 3-7
sharing, 2-6
terminating execution, 3-7

Executable Program Formats. See EPFs
EXIT routine, exiting from a program

EPF, 3-7
External linkage

at compile time, 3-2
dynamic program EPFs, 3-2

External references
PMA language, A-5
types of, 3-2

Fault bit. See Faulted IPs
Faulted IPs, 2-2

creation of, 3-3
fault condition, 3-6
reset at EPF registration, 2-3
reset at execution, 2-3
reset at program termination, 3-7
resetting, 2-2

set to dynt name, 3-6
FRESRA subroutine, 3-7
FTN language

linkage fault errors, 2-4
supporting registered EPFs, 6-4,6-5

Functions
allocating/deallocating return value

space, 3-7
running program EPF as, 4-2

GS prefix entrynames, 5-14
Global variables, 7-9

/
I-mode

compiling EPFs, 4-3
debugger for, 8-7

ICE command
effect on process-class libraries, 3-9
effects on user search lists, 5-23
resetting search lists, 4-5

ILLEGAL_SEGNO$ condition
no main entrypoint, A-8
static-mode program, C-3

Imaginary addresses
See also Addresses
conversion to real addresses, 3-6
in ECB, 3-2
memory map, 8-4

Impure procedure code
initializing, 5-8
JST instructions, A-10
PMA language, A-9
segment address, 8-5
segment assignment, 2-4

Impure procedure segments, 2-4
actual addresses, 8-2
allocating for dynamic library EPFs,

3-8
imaginary addresses, 8-2

Indirect pointers (in EPFs). See IPs
Internal subroutine calls, registered EPFs,

6-2
Invoking EPFs, 1-6

Second Edition X-3

Advanced Programmer's Guide I: BIND and EPFs

IPs
description, 2-2
faulted, 2-2
in procedure text, A-10
PMA language, A-12, A-15
registered EPFs, 6-2
static-mode programs, C-2

IPSD debugger, determining EPF
addresses, 8-7

IX-mode, 4-3

JST instruction, A-10

Languages
See also C language; FTN language;

PMA assembly language
coding library EPFs, 5-6
defining main procedure, 4-4
defining static variables, 5-10
I/O statements and library class, 5-9
registered EPF support, 6-4

LB. See link Base
LE command. See LIST_EPF command
LIB directory, 5-4

user's binary libraries, 5-21
LIBEDB binary file editor, B-l, B-9
Libraries. See Binary libraries; Library

EPFs; Runtime libraries
Library EPFs, 5-1

See also Dynamic EPFs; Process-class
library EPFs; Program EPFs;
Program-class library EPFs;
Registered EPFs; Static-mode
libraries

allocating stack space, 5-12
binary libraries for, 5-20
calling internal routines, 5-14
calling routines in other library EPFs,

3-10
class and language-directed I/O, 5-9
class and static data, 5-9
class restrictions, 5-8
compiling, 5-7
entryname restrictions, 5-14
excluding entrypoints, 5-13
initializing, 5-8,5-9

initializing registered, 6-5
installing in file system, 5-21
introduction, 1-4
linkage information for, 9-1
listing, 9-8
listing entrypoints, 6-25
matching data types of calling

programs, 5-7
nested libraries, 6-6
passing pointers, 5-13
Prime-supplied (list), D-l
process-class libraries, 3-9,5-10
program-class libraries, 3-9,5-11
programming considerations, 5-6, 5-7
reading dynamics links, 9-10
registering, 6-1
routine calling sequences, 5-6
setting ENTRYS for calling programs,

5-5
setting library class, 5-7

LIBRARY* directory, 5-21
Link base

actual address of, 8-7
imaginary address of, 8-6
shared by multiple entrypoints, 8-11

Link base register, calculating link frame
address, 8-7

Link frame
calculating address of, 8-7
location, 3-2

Linkage areas
deallocating, 3-7
multiple command levels, 3-7

Linkage/data segments
See also Data segments
actual addresses, 8-2
allocating, 3-5
data sharing, 7-1
deallocating, 3-8
deallocating process-class, 3-9
description, 2-4
dynamic library EPFs, 3-9
EPF types table, 6-16
imaginary addresses, 8-2
initializing, 3-6, 5-8
initializing at registration, 6-14
IPs, 2-2
link frame location, 8-7
mapping into, 2-5

offset, 2-5
offset addresses, 8-6
shared and unshared, 2-4

Linkage/data text
dynamic program EPFs, 3-2
imaginary address of, 3-2
location, 3-2
PMA language, A-3

UNKAGE_ERROR$ condition,
process-class library EPF BIND
error, 5-13

LINKAGE_FAULT$ condition
calling FTN routines, 2-4
entryname not found, 2-3
library class restrictions, 5-9
routine not an external entrypoint, 5-23
user's ENTRYS search list, 5-5
wrong ENTRYS search list, 5-23

Linking programs. See BIND linker
LISTJEPF command

EPF pathnames, 8-4
listing segment addresses, 8-2
not active EPFs, 3-7
-REG option, 6-23

UST_LIBRARY_ENTRYPOINTS
command. See LLENT command

LIST_REGISTERED_EPF command,
6-20,6-23

LISTJSEGMENT command, 8-12
Literals, 6-16, A-10
LLENT command, 5-23

-REG option, 6-25
LOAD loader, 1-1
LRE command. See

UST_REGISTERED_EPF
command

Af
Main entrypoint, 3-3

defining, 4-3
PMA language, A-7

Mapping EPFs
example, 8-5
imaginary segment addresses, 8-4

Memory requirements, registered EPFs,
6-2

X-4 Second Edition

Index

N
Non-shared dynts. See Per-user dynts

Paging disk space, registered EPFs, 6-3,
6-21

PB. See Procedure Base
PBECB compiler option

EPF restrictions, 4-3
registered EPFs, 4-3

PCL instruction, 3-4
calling routines, 2-3
execution of, 3-4
invoking a program, 3-6
LB-relative, 8-11
SB-relative, 8-11
XB-relative, 8-11

Per-user dynts. See Dynts
Per-user data and linkage

dynamic EPFs, 6-2
EPF types table, 6-16
mapping into segments, 2-5
registered EPFs, 6-2
segment address, 8-5

Per-user dynts
definition, 2-1
description, 2-3
registered library EPFs, 6-6, 6-7
setting binary library default, 9-6
setting for binary library, 9-7, 9-10

Performance issues. See EPF performance
PMA assembly language

CALL pseudo-operation, A-5
coding EPFs, A-1
COMM pseudo-operation, A-6
DYNM pseudo-operation, A-3
ECB pseudo-operation, A-4
END pseudo-operation, A-1
ENT pseudo-operation, A-5
LINK pseudo-operation, A-3
MIP pseudo-operation, A-15
PROC pseudo-operation, A-3
pseudo-operations, A-1
SEG pseudo-operation, A-3, A-9,

A - l l
supporting registered EPFs, 6-4, 6-5
updating atomically, 7-6

XAC pseudo-operation, A-6
Pointer faults. See Faulted IPs
POLNTER.FAULTS condition,

static-mode program, C-3
PRIMOS direct entries

definition, 5-3
dynt types, 6-7
identifying, 5-3

PRIMOS entrypoints. See PRIMOS direct
entries

Procedure base
actual address of, 8-6
imaginary address of, 8-5

Procedure call. See PCL instruction
Procedure code. See Impure procedure

code; Pure procedure code; Impure
procedure code

Procedure frame, location, 3-2
Procedure invocation, 3-4
Procedure segments

See also Impure procedure segments;
Pure procedure segments;
Segments

dynt names, 2-2
Procedure text

dynamic program EPFs, 3-2
imaginary address of, 3-2
location, 3-2
PMA language, A-3
program invocation, 3-5
routine names in, 3-3

Procedures, entrypoints for, 3-4
Process-class library EPFs

program termination, 3-10
sharing data among programs, 7-1

Process-class storage pool, 5-13
Processes, sharing data among, 7-2
Program EPFs, 4-1

calling from another program EPF, 4-2
function calls, 3-7
installing, 4-5
introduction, 1-3
main entrypoint, 4-3
registering, 6-1
running, 3-6,4-2

Program execution. See Suspending
program execution

Program invocation, 3-3
data initialization, 6-14
reinvoking programs, 3-4

subroutines, 3-4
Program-class library EPFs

discussion, 3-9
program termination, 3-10

Program-class storage pool, 5-13
Pseudo-operations. See PMA assembly

language
-PUBLIC search rule, 6-25
Pure procedure code

mapping, 3-5
mapping into segments, 2-5
PMA language, A-ll
segment address, 8-5

Pure procedure segments
actual addresses, 8—4
description, 2-4
imaginary addresses, 8-2

Q
Quick calls, 3-4

R-mode, compiling EPFs, 4-3, C-5
REGISTER_EPF command, 6-17

-INIT option, 6-15
-INIT_DEPENDENCY_UST option,

6-15
Registered EPFs, 6-1

See also Registering EPFs; Registrable
EPFs

access rights, 6-26
advantages, 6-1
building with BIND, 6-6, 6-14
calling, 6-27
calling dynamic library routines, 6-18
compiling, 6-4
creating, 6-3
dependency list, 6-19
disk I/O, 6-2, 6-21
dynt types, 2-1, 6-7
executing, 3-11,6-21, 6-27
indirect dependencies, 6-18
initialization routines, 6-14
initializing, 5-8
initializing called libraries, 6-5
introduction, 1-2
library class, 5-8

Second Edition X-5

Advanced Programmer's Guide I: BIND and EPFs

Registered EPFs (Continued)
linkage sharing, 6-2
linkage/data segment addresses, 8-2
listing, 6-23
mapping, 2-5
mapping at execution, 2-6
mapping at registration, 2-6,3-10
memory map, 8-5
memory required, 6-2
multiple copies, 6-20
paging, 6-2, 6-21
per-user linkage, 5-8
phases of, 3-10
placing routines in libraries, 6-6
PMA language, A-3, A-15
Prime-supplied (list), D-l
recompiling old code, 6-5
registration numbers, 6-20
registration states, 6-19,6-20,6-21,

6-23,6-25
searching sequence, 6-25
segment allocation, 2-4,6-16
shared procedure segment addresses,

8-2
sharing common areas, 6-15
sharing data among processes, 7-2
suspended state, 2-4,6-17
testing, 6-16
unregistering, 6-21
updating, 6-20
use of term, 1-3

Registering EPFs, 6-17
See also Registered EPFs; Registrable

EPFs
circular dependencies, 6-18
cross-checking, 6-20
dependency list, 6-17, 6-19
direct dependencies, 6-18
dynt type error, 6-11
indirect dependencies, 6-18
initialization routines, 6-14
initialized state, 6-19, 6-20
internals, 3-10
introduction, 1-6
listing dependencies, 6-23
listing unsnapped dynts, 6-23
passing initialization options, 6-15
phases, 6-19
ready state, 6-20, 6-25

suspended state, 6-18, 6-19,6-20,
6-21,6-23,6-25

uninitialized state, 6-19, 6-20
unregistering, 6-21, 6-26

Registrable EPFs, 1-5
See also Registered EPFs; Registering

EPFs
executing, 6-27
segment assignments, 6-16
use of term, 1-3

REMOVE_EPF command, 3-8,3-9,
3-10, A-13

Resolving dynamic links. See Snapping
dynts

RESUME command, program EPFs, 4-2
Ring numbers, in addresses, 8-2
Routines

See also Called routines; Calling
routines

duplicate names, 6-25
frequently-called, 6-6
placing in libraries, 6-6
rarely-called, 6-6
static-mode, 5-3

.RUN files. See EPFs
Runtime libraries

compared with binary libraries, 5-3
definition, 5-2
searching sequence, 2-2

Search lists
See also BINARYS search list;

COMMANDS search list;
ENTRYS search list; ICE
command; INCLUDES search list

modifying system default, 5-22
SEG loader, 1-1

changing linkage segments, C-4
creating static-mode memory image,

7-5
Segment addresses

actual addresses, 8-1
actual addresses of imaginary

segments, 8-2
DATA segment, 8-4
description, 2-4
dynamic segments, 2-4
imaginary addresses, 2-5, 6-21, 8-1

imaginary segment numbers, 3-5
listing mapped EPFs, 8-2
octal arithmetic rules, 8-7
offset, 2-5, i-A, 8-6
parentheses, 8-2
plus and minus signs, 8-1
PROC segment, 8-4
ring numbers, 8-2
routine address, 2-2
routine name, 2-2
SHARED PROC segment, 8-5

Segments
See also Pure procedure segments;

Impure procedure segments
addresses, 8-1
EPF types table, 6-16
impure procedure segments, 8-2
linkage/data segments, 8-2
procedure, 2-2,2-4
procedures in, 3-4
pure procedure segments, 8-2, 8-4
shared procedure segments, 8-2
size of, 6-21
static, 7-4

Semaphores, 7-8
SHARE command, 7-4, C-2
Shared data

common areas, 6-15
corrupted, 7-6

Shared dynts
See also Dynts
definition, 2-1
description, 2-3
discussion, 6-5
initialization overhead, 6-5
restrictions on use, 2-3,6-19
setting binary library default, 9-6
setting for binary library, 9-7,9-10
snapping, 6-19
unable to snap, 2-4

Shared linkage, registered EPFs, 6-2
Shared procedure segments, imaginary

addresses, 8-2
Shared segments

EPF types table, 6-16
static-mode routines, 5-3

Shared static-mode libraries, description,
C-2

X-6 Second Edition

Index

Shared static-mode libraries, dynt types,
6-5,6-7

Sharing data
among processes, 7-2
among programs, 7-1
concurrent access, 7-5
program example, 7-9

Short calls, 3-4
Shortcalled routines

See also Routines
definition, 2-2
description, 3-4

Snapping dynts
See also Dynts
definition, 2-1
description, 2-2,3-6
during registration, 6-19
effects on called routine library, 3-9
multiple calls to routines, 3-6
multiple dynts to same library, 3-9
static-mode programs, C-2
unable to snap, 6-19

Stack frame
accessing using DUMP_STACK, 8-9
discussion, 6-4
PMA language, A-3
procedure address, 8-11
stack root, 8-13

Static data
compiler initialization, 3-2
dynamic program EPFs, 3-2
example, 5-11
setting library EPF class, 5-9

Static links, 1-1
Static segments

allocating, 7-4
initializing data, 7-4
sharing data using, 7-4

Static variables, discussion, 5-10
Static-mode libraries, 5-3, C-5
Static-mode programs

converting to registered EPFs, C-5
executing, C-l
using register settings, C-6

Subcommands. See BIND linker
Subroutines. See Routines
Suspending program execution

EPF linkage, 3-7
shared data corruption, 7-6

static-mode programs, C-l, C-5
Synchronizers, 7-8

Tuning EPFs. See EPF performance

u
UNREGISTER_EPF command, 6-21

V-mode
compiling EPFs, 4—3
debugger for, 8-7

Variables
global, 7-9
static, 5-10

Virtual Memory File Access. See VMFA
VMFA, sharing dynamic EPFs, 2-6
VPSD debugger, determining EPF

addresses, 8-7

Z frame organization, 6-4
compiler versions supporting, 6-4

Second Edition X-7

Surveys

Reader Response Form
Advanced Programmer's Guide I: BIND and EPFs
DOC10055-2LA

Your feedback will help us continue to improve the quality, accuracy, and organization of our user publications.

1. How do you rate this document for overall usefulness?

□ excellent □ very good □ good □ fair □ poor

2. What features of this manual did you find most useful?

3. What faults or errors in this manual gave you problems?

4. How does this manual compare to equivalent manuals produced by other computer companies?

[_] Much better □ Slightly better [_] About the same
□ Much worse □ Slightly worse [_] Can't judge

5. Which other companies' manuals have you read?

Name:
Position: _
Company:.
Address:—

Postal Code:

First Class Permit #531 Natick, Massachusetts 01760

BUSINESS REPLY MAIL
Postage will be paid by:

Prime,
Attention: Technical Publications
Bldg 10
Prime Park, Natick, Ma. 01760

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

	Front Cover
	Title Page
	i
	Copyright
	ii
	How To Order Technical Documents
	iii
	Reading Path for PRIMOS Documentation
	iv
	Contents
	v
	vi
	vii
	viii
	ix
	About This Book
	xi
	xii
	References
	xiii
	Prime Documentaton Conventions
	xiv
	xv
	Chapter 1
	Introduction to EPFs
	1-1
	1-2
	1-3
	1-4
	1-5
	1-6
	1-7
	Chapter 2
	EPF Principles
	2-1
	2-2
	2-3
	2-4
	2-5
	2-6
	2-7
	Chapter 3
	The Life of an EPF
	3-1
	3-2
	3-3
	3-4
	3-5
	3-6
	3-7
	3-8
	3-9
	3-10
	3-11
	Chapter 4
	Program EPFs
	4-1
	4-2
	4-3
	4-4
	4-5
	Chapter 5
	Library EPFs
	5-1
	5-2
	5-3
	5-4
	5-5
	5-6
	5-7
	5-8
	5-9
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	Chapter 6
	Registered EPFs
	6-1
	6-2
	6-3
	6-4
	6-5
	6-6
	6-7
	6-8
	6-9
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	6-23
	6-24
	6-25
	6-26
	6-27
	Chapter 7
	Shared Data
	7-1
	7-2
	7-3
	7-4
	7-5
	7-6
	7-7
	7-8
	7-9
	7-10
	7-11
	7-12
	7-13
	7-14
	Chapter 8
	Maps and Addresses
	8-1
	8-2
	8-3
	8-4
	8-5
	8-6
	8-7
	8-8
	8-9
	8-10
	8-11
	8-12
	8-13
	Chapter 9
	EDIT_BINARY
	9-1
	9-2
	9-3
	9-4
	9-5
	9-6
	9-7
	9-8
	9-9
	9-10
	9-11
	Appendices
	Appendix A
	Coding EPFs in PMA
	A-1
	A-2
	A-3
	A-4
	A-5
	A-6
	A-7
	A-8
	A-9
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	Appendix B
	Obsolete Binary Editors
	B-1
	B-2
	B-3
	B-4
	B-5
	B-6
	B-7
	B-8
	B-9
	Appendix C
	EPFs and Static-mode Applications
	C-1
	C-2
	C-3
	C-4
	C-5
	C-6
	C-7
	C-8
	C-9
	C-10
	Appendix D
	A List of Registered Library EPFs
	D-1
	Index
	X-1
	X-2
	X-3
	X-4
	X-5
	X-6
	X-7
	Surveys
	
	

