RN

B,

Prime.

A Prime Company

Advanced
Programmer’s
Guide I:

BIND and EPFs

Revision T3.0-23.0

DOC10055-2LA

A

B

)

Advanced
Programmer’s Guide I:
BIND and EPFs

Second Edition

Glenn Morrow

This manual documents the software operation of the PRIMOS operating
system on 50 Series computers and their supporting systems and

utilities as implemented at Master Disk Revision Level 23.0 (Rev. 23.0)
and Translator Family Revision Level T3.0.

Prime Computer, Inc., Prime Park, Natick, Massachusetts 01760

The information in this document is subject to change without notice and should not be
construed as a commitment by Prime Computer, Inc. Prime Computer, Inc., assumes no
responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or
copied only in accordance with the terms of such license.

Copyright © 1990 by Prime Computer, Inc. All rights reserved.

PRIME, PRIME, PRIMOS, and the Prime logo are registered trademarks of

Prime Computer, Inc. 50 Series, 400, 750, 850, 2250, 2350, 2450, 2455, 2550, 2655,
2755, 2850, 2950, 4050, 4150, 4450, 6150, 6350, 6450, 6550, 6650, 9650, 9655, 9750,
9755, 9950, 9955, 995511, Prime INFORMATION CONNECTION, DISCOVER,
INFO/BASIC, MIDAS, MIDASPLUS, PERFORM, PERFORMER, PRIFORMA,
Prime INFORMATION, PRIME/SNA, INFORM, PRISAM, PRIMAN, PRIMELINK,
PRIMIX, PRIMEWORD, PRIMENET, PRIMEWAY, PRODUCER, PRIME TIMER,
RINGNET, SIMPLE, Prime INFORMATION/pc, PT25, PT45, PT65, PT200, PT250,
and PST 100 are trademarks of Prime Computer, Inc.

Printing History

Preliminary Edition (DOC9229-1LA) January 1985 for Revision 19.4.0
First Edition (DOC10055-1LA) November 1985 for Revision 19.4.2
Second Edition (DOC10055-2LA) September 1990 for Revision T3.0-23.0

Credits

Editorial: Mary Skousgaard

Production Support: Sonya Zegarra

Technical Support: Julie Cyphers, Rosemary Crowley
lllustration: Carol Smith

Production: Judy Gordon

' J

J

)

Y

)

How to Order Technical Documents
To order copies of documents, or to obtain a catalog and price list
¢ United States customers call Prime Telemarketing, toll free, at
1-800-343-2533

Monday through Thursday, 8:30 a.m. to 8:00 p.m., and
Friday, 8:30 a.m. to 6:00 p.m. (EST).

® International customers contact your local Prime subsidiary
or distributor.

PRIME SERVICEs*
To obtain service for Prime systems
® United States customers call toll free at

1-800-800-PRIME

® International customers contact your Prime representative.

Surveys and Correspondence

Please comment on this manual using the Reader Response Form provided in the back of
this book. Address any additional comments on this or other Prime documents to

Technical Publications Department
Prime Computer, Inc.

500 Old Connecticut Path
Framingham, MA 01701

fii

iv

Reading Path for PRIMOS Documentation

Book Level
PRIMOS Introduction
Guide for all Users
4
A
CcPL PRIMOS
A | A Gororaanas Reference
Guide for all Users
4 4
A
Subroutines Language
felprence iy Reference for
I ——— Programmers
y
l [-
\
el | Wl o p
ov! uice 1o rogrammer
Deb BIND and
Uw?g‘;ar gﬂiiggenae EPFs an Tools
Guide
4
4 A _
Advanced Advanced Advanced Advanced
Programmer's Programmer's Programmer's Programmer's
Guide Guide il Guide Il Guide:
BIND and Command File System Appendices
EPFs Environment and Master
Index
Advanced
v Programmer
Information
System Instruction Assembly
Architecture Sets Guide Language
Reference Programmer's
Guide Guide
Lpath D10055 2LA

J

J

Contents

About This Book ... xi
Specifics of This Volume . .. xi
References . . . xiii

1 Introduction to EPFs. .. 1-1

Dynamic and Registered EPFs.. . . 1-2
Dynamic EPFs.. .. 1-2
Registered EPFs . . . 1-2

Program and Library EPFs . .. 1-3
Program EPFs.. .. 1-3
Library EPFs... 14

Creating and Using EPFs . .. 14
Source Code . .. 1-5
Compiling . .. 1-5
Linking With BIND . .. 1-5
Installing EPFs ... 1-6
Registering EPFs . . . 1-6
Executing EPFs ... 1-6

EPFs and Static-mode Applications . .. 1-7

2 EPF Principles . . . 2-1

Dynamic Linking . .. 2-1
Creating Dynamic Links . . .2-2
Resolving Dynamic Links . . . 2-2
Dynamic Linking Errors . . . 2-3
EPF Organization . . . 2-4 ‘
Segment Types . ..24
EPF Format . .. 2-5
EPF Mapping . . . 2-6
EPF Sharing ...2-6

vi

3 The Lite of an EPF . .. 31

The Life of a Dynamic Program EPF . . . 3-1
Compiling or Assembling . . .3-2
Building With BIND . . . 3-2
Program Invocation . . . 3-3
Pure Procedure Mapping . .. 3-5
Linkage Allocation . . . 3-5
Linkage Initialization . . . 3-6
Entrypoint Invocation . . . 3-6
Resolving Dynamic Links .. . 3-6
EPF Termination and Reinvocation . . . 3-7
Removing an EPF From Memory . .. 3-7

The Life of a Dynamic Library EPF ... 3-8
Invoking and Mapping . . . 3-8
Linkage/Data Allocation and Initialization . . . 3-9
Calling Routines From a Library EPF . . . 3-10
Termination and Removal . . . 3-10

The Life of a Registered EPF . . . 3-10

Program EPFs . . . 4-1

Coding and Compiling . . . 4-2
Compiler Options . . .4-3
Linking With BIND . ..4-3
Defining the Main Entrypoint . . . 4-3

Installation . . . 4-5

Library EPFs . .. 5-1

The Library Mechanism . . . 5-2
Runtime Libraries . . . 5-2
Binary Libraries . . . 5-3
ENTRYS Search List . .. 5-4

Using the Library Mechanism . . . 5-5

Coding and Compiling .. . 5-6
Coding Guidelines . . . 5-6
Compiling . . . 5-7

Determining Library Class . .. 5-7
Library Initialization . . . 5-8
Library-class Mixing .. .5-8
Language-directed I/O . .. 5-9
Static Data Usage . . . 5-9
Storage Allocation Issues . .. 5-12

Determining Library Entrypoints . . . 5-13
Entryname Conventions . . . 5-14

')

J) J

3

A

Building a Library EPF With BIND . . . 5-17
Creating Binary Libraries With EDIT_BINARY ... 5-20

Installing Libraries . . . 5-20
Installing Binary Libraries . . . 5-20
Installing Library EPFs . . . 5-21
Setting ENTRY$ Search Rules . .. 5-22
Modifying the System Default ENTRYS Search List . . . 5-22
Creating and Modifying Private Search Lists . . . 5-23

6 Registered EPFs . . . 6-1

Should You Register an EPF? . . . 6-1
Shared Linkage . . . 6-2
Other Factors . . . 6-2

Creating Registered EPFs . . . 6-3
Compiler Support . . .64
Coding Guidelines. . . 6-5
Compiler Options . . . 6-6

Building With BIND . .. 6-6
Using the ~REGISTER Option . . . 6-7
Setting the Dynt Type . . . 6-7
Dynt Types and Binary Libraries . . . 6-9
Setting Dynt Types in Binary Libraries . . . 6-11
Rebuilding Old Binary Libraries . . . 6-14
Supplying Initialization Routines . . . 6-14
Creating Shared Common Areas . .. 6-15

Testing an EPF . . . 6-16

Registering EPFs . . . 6-17
Dependency Lists . . . 6-17
Registered EPF States . . . 6-18
Multiple EPF Registrations . . . 6-20
Unregistering EPFs . . . 6-21
Setting Paging Disk Space . . . 6-21

Using Registered EPFs . . . 6-22
Getting Information on Registered EPFs . . , 6-23
Setting Search Rules for Registered EPFs . . . 6-25
Registered EPF Access. .. 6-26
Invoking Registered Program EPFs . . . 6-27

7 Shared Data. .. 7-1

Using Process-class Library EPFs . . . 7-1

Using Shared Read/Write Common Areas . . . 7-2
Creating Shared Common Areas With BIND . . . 7-3

vif

viii

Using Static Shared Data .. . 7-4
Allocating Space . . . 7-4
Initializing the Data . .. 7-4
Using the SYMBOL Subcommand . . . 7-5

Providing for Concurrent Updates . . . 7-5
Atomic Update Routines in PMA ... 7-6
Other Techniques . . . 7-8

A Data Sharing Example . . . 7-9

8 Maps and Addresses . . . 8-1

Imaginary and Actual Addresses . .. 8-1
Signed Segment Numbers . . . 8-2
LIST_EPF Command . . .82

The BIND Map...84

From Imaginary to Actual Addresses. .. 8-6
Determining the Procedure Base Address . . . 8-6
Determining ECB Addresses . . . 8-6
Determining the Link Frame Address . . . 8-7

Examining EPFs in Memory . . . 8-7
Examining Mapped EPFs .. . 8-7
Using the DUMP_STACK Command. . . 8-9

Locating the Stack Frame for a Procedure . . . 8-10
Multiple Entrypoints With the Same LB ... 8-11

Examining the Stack Frame for a Procedure Invocation .

9 EDIT BINARY... 9-1

Creating a Binary Library From a Library EPF . . . 9-2

EDIT_BINARY Reference ... 94
Command Line Options . .. 94
Subcommands. .. 9-5

Appendices . . .

A Coding EPFsin PMA ... A-1

Basic Concepts of PMA Programming . .. A-1
Use of SEG or SEGR ... A-3
Procedure Text ... A-3
Linkage Text. .. A-3
Stack and Parameter Allocation Information . . . A-3
Linkage Information . . . A4
External Linkage Information . . . A-5
Designating the Main Entrypoint . . . A-7

..8-13

J

J

J

D

3

Restrictions on Writing PMA Modules for EPF Execution . . . A-8

PMA Subroutines Must Execute in V-mode or I-mode Environment . . .

Impure PMA Module Restrictions . . . A-9

Pure PMA Modules . . . A-11

Explicit Addressing of Dynamically Placed Externals . . . A-11
Storing Into IPs or ECBs .. . A-12

B obsolete Binary Editors . .. B-1

LIBEDB...B-1

EDB...B-2
Operation ... B-2
Subcommand Summary ...B-2
Obsolete Commands . . . B-5
EDB Error Messages . . . B-6
Examples . .. B-6
Creating a Library of Subroutines . . . B-6
Displaying Entrypoints . . . B-7
Replacing an Object Module in the Library . . . B-8
Sample Use of LIBEDB ... B-9

C EPFs and Static-mode Applications . .. C-1

Static-mode Applications in a Dynamic Environment . .. C-1
Restrictions on Static-mode Invocations . . . C-1
Static-mode Programs That Share Linkage . . . C-2

Converting From Static-mode Programs to EPFs . . . C-5
Rewriting Build Sequences . . . C-6

Converting Programs That Use Register Settings . . . C—6
How Static-mode Programs Use Registers . . . C-7
How to Achieve This Functionality in an EPF ... C-7

D A List of Registered Library EPFs . . . D—1

Index

A-9

ix

3

About This Book

The Advanced Programmer’s Guide is a four-volume series that provides
technically sophisticated information for systems-level programmers. This

series supplements basic reference information found in other PRIMOS®
manuals.

The books in this series are intended for programmers who are experienced with
the PRIMOS operating system and 50 Series™ systems. In addition, you should
be experienced in at least one high-level programming language supplied by
Prime (preferably PL/I, C, or FORTRAN-77).

The Advanced Programmer’s Guide series consists of four volumes:
® Advanced Programmer’s Guide I: BIND and EPFs (DOC10055-2LA)
e Advanced Programmer’s Guide II: File System (DOC10056-3LA)

® Advanced Programmer’s Guide I1l: Command Environment
(DOC10057-2LA)

e Advanced Programmer’s Guide: Appendices and Master Index
(DOC10066-4LA)

The four volumes of the Advanced Programmer’s Guide can be ordered as a set
using DCP10171.

Specifics of This Volume

This volume describes Prime’s Executable Program Format (EPF), the standard
format for executable programs and subroutine libraries for all languages
supported by Prime®. This manual assumes a working knowledge of the BIND
linker, which is used to build EPFs. The BIND linker is described in the
Programmer’s Guide to BIND and EPFs.

e Chapter 1 describes the four types of EPFs: dynamic program EPFs,
dynamic library EPFs, registered program EPFs, and registered library
EPFs. It also outlines the basic steps used to create an EPF.

Second Edition Xi

Advanced Programmer’s Guide I: BIND and EPFs

e Chapters 2 and 3 provide background information about the essential
principles of EPFs: dynamic memory allocation and dynamic linking to
called routines.

¢ Chapters 4, 5, and 6 provide detailed instructions for creating and using the
different types of EPFs.

¢ Chapters 7 and 8 provide in-depth information useful for analyzing and
debugging EPFs in memory.

¢ Chapter 9 documents the EDIT_BINARY binary file editor.

® Appendix A describes special considerations for writing EPFs in PMA,
Prime’s assembly language.

¢ Appendices B and C provide reference information on obsolete but still
supported facilities: the LIBEDB and EDB binary file editors and
static-mode programs.

¢ Appendix D lists the runtime libraries that Prime supplies as registered
library EPFs.

Specifics of the Series

The Advanced Programmer’s Guide series divides information among the
volumes of the set as follows:

® Volume I: BIND and EPFs (this volume) describes Executable Program
Formats (EPFs), including registered EPFs, and describes the
EDIT_BINARY binary file editor.

¢ Volume II: File System describes the PRIMOS file system. It provides
detailed information about the file server, access rights, search rules, and
data and text manipulation in file system objects.

® Volume III: Command Environment describes how to use EPF
initialization routines and how to invoke a user program as a command,
subroutine, or function from a user program or from PRIMOS command
level.

e Appendices and Master Index provides appendix material applicable to all
of the volumes in this document set. It lists the standard error codes used
by PRIMOS, along with their messages and meanings. It describes the
new features of recent PRIMOS revisions that may be of interest to
advanced programmers. Finally, it provides a Master Index to all four
volumes of the Advanced Programmer’s Guide series.

This serics describes the lowest-level interfaces supported by PRIMOS and its
utilities. It is designed for systcms-level programmers who arc designing new

Xii Second Edition

J

J

r

Yy)

References

About This Book

products, such as language compilers, data management software, electronic
mail subsystems, utility packages, and so on. Such products are themselves
higher-level interfaces, typically used by other products rather than by end users,
and therefore must use some or all of the low-level interfaces described in this
series for best results. Most of the information in this series deals with interfaces
to PRIMOS that are typically used only in small portions of a product and with
overall product design issues that should be considered before coding begins.

Higher-level interfaces not described in this guide include
e Language-directed I/O
e The applications library (APPLIB)
e The sort packages (VSRTLI and MSORTS)
e Data management packages (such as MPLUSLB and PRISAMLIB)
e Other subroutine packages

The above interfaces are described in other manuals, such as language reference
manuals and the Subroutines Reference series.

The basic document set for the PRIMOS operating system is shown in the
Reading Path for PRIMOS Documentation on page iv of each manual. This
illustration shows the manuals and their intended audience. Lines between
manuals show the order in which these manuals are commonly used to locate
increasingly detailed information about a topic.

Users of this series should be familiar with the PRIMOS User’s Guide
(DOC4130-5LA), which contains information on system use, directory structure,
the condition mechanism, CPL files, ACLs, global variables, and how to load
and execute files with external subroutines. New information for Rev. 23.0 can
be found in the PRIMOS User’s Release Document (DOC10316-1PA) and the
Rev. 23.0 Software Release Document (DOC10001-7PA).

You should use the Advanced Programmer’s Guide along with the standard
PRIMOS references: the PRIMOS Commands Reference Guide (DOC3108-7LA
updated by RLN3108-71A) and the five-volume Subroutines Reference series:

o Subroutines Reference I: Using Subroutines (DOC10080-2LA updated by
UPD10080-21A)

® Subroutines Reference Ii: File System (DOC10081-2LA)
o Subroutines Reference Il1: Operating System (DOC10082-2LA)
o Subroutines Reference IV: Libraries and I'O (DOC10083-2LA)

Second Edition Xiif

Advanced Programmer’s Guide I: BIND and EPFs

® Subroutines Reference V: Event Synchronization (DOC10213-1LA updated
by UPD10213-11A)

Users of this series should be familiar with Prime system architecture, as
described in the 50 Series Technical Summary (DOC6904-2LA) and the System
Architecture Reference Guide (DOC9473-2LA).

Users of this volume should also be familiar with the following Prime
publications:

® Programmer’s Guide to BIND and EPFs (DOC8691-1LA) and its updates
UPD8691-11A and UPD8691-12A

o SEG and LOAD Reference Guide (DOC3524-192L)

System Administrators installing registered EPF libraries supplied by Prime
should consult the Rev 23.0 Software Installation Guide (IDR10176-3XA).

For a complete list of available Prime documentation, consult the Guide to Prime
User Documents.

Prime Documentation Conventions

The following conventions are used throughout this document. The examples in
the table illustrate the uses of these conventions.

Convention Explanation Example

Uppercase In command formats, words in LIST_EPF
uppercase bold indicate the names of
commands, options, statements, and
keywords. Enter them in either
uppercase or lowercase.

Italic Variables in command formats, text, FILE my_prog
or messages are indicated by lower-
case italic.

Abbreviations If a command or option has an DEFAULT DYNT_TYPE
in format abbreviation, the abbreviation is DDT
statements placed immediately below the full

form.

more optional items. Choose none, _SIZE

Brackets Brackets enclose a list of one or D [_ BRIEF]
one, or several of these items.

Braces Braces enclose a list of items. ‘filename
Choose one and only one of these CLOSE {~ ALL
items.

Xiv Second Edition

J

J

h)

Convention

Braces within
brackets

Monospace

User input in
examples

Hyphen

Ellipsis

Subscript

Parentheses

Explanation

Braces within brackets enclose a list
of items. Choose either none or only
one of these items; do not choose
more than one.

Identifies screen output, user input,
prompts, and messages.

In examples, user input is under-
scored but system prompts and out-
put are not.

Wherever a hyphen appears as the
first character of an option, it is a
required part of that option.

An ellipsis indicates that you have
the option of entering several items
of the same kind on the command
line.

A subscript after a number indicates
that the number is not in base 10.
For example, the subscript 8 is used
for octal numbers.

In command or statement formats,
you must enter parentheses exactly
as shown,

About This Book
Example
BIND {p“ ‘f"’am}
options

address Connected

OK, RESUME MY PROG

DYNT -SHARED

pdev-1 [...pdev-n]

2003

DIM array (row, col)

Second Edition xv

D

)

Introduction to EPFs

An EPF (Executable Program Format) is the standard format for executable
programs and subroutine libraries for all languages supported by Prime.
Compiling (or assembling) your program produces a binary object code file.
You link this binary file using BIND, a dynamic linker. The output file created
by BIND is an EPE. An EPF is an executable code file.

EPFs are dynamic. EPF memory allocation is handled dynamically during
program execution. That is, PRIMOS establishes addressing to whatever
locations in memory are available, rather than requiring pre-specified locations
in memory.

Most programs contain calls to external routines. These external routines are
stored in separately compiled binary libraries (.BIN files). When you use BIND
to build an EPF, it establishes links from your program to these external routines.
For example, if your program calls an external subroutine, BIND establishes a
link between the call statement and the subroutine. These links are dynamic. A
dynamic link contains information that enables PRIMOS to locate the
subroutine when needed; it does not contain the actual address of the subroutine.

PRIMOS also supports separate tools (SEG and LOAD) that create executable
programs that contain static links. Static linking should not be used for new
program development. Appendix C of this guide describes how to convert
existing static programs to EPFs. Static linking is not described in this guide;
refer to the SEG and LOAD Reference Guide for further details.

For basic information on programming with EPFs, see the PRIMOS User’s
Guide. For information on using the BIND linker, see the Programmer’s Guide
to BIND and EPFs.

EPFs simplify the creation, installation, and maintenance of user-written
programs. PRIMOS takes care of loading, sharing and most memory
management S0 you can concentrate on program functionality. You can create a
variety of EPF types to match the specific requirements of your application.

Figure 1-1 shows the relationships among the four types of EPFs: dynamic
program EPFs, dynamic library EPFs, registered program EPFs, and registered
library EPFs. These EPF types are described in the sections of this chapter that
follow.

Second Edition 1—1

Advanced Programmer’s Guide I: BIND and EPFs

Dynamic Program EPF Dynamic Library EPF

Registered Program EPF Registered Library EPF

Figure 1—1. The Four EPF Types

Information presented in Chapters 4, 5, and 6 explains the shared characteristics
of the four EPF types and builds on the relationships shown in Figure 1-1.

Dynamic and Registered EPFs

1-2

Second Edition

There are two main types of EPFs: dynamic EPFs and registered EPFs. Both
dynamic EPFs and registered EPFs are created using the BIND linker and both
types perform dynamic memory allocation and contain dynamic links.

Dynamic EPFs

A dynamic EPF resolves its dynamic links during program execution. Prior to
execution, a dynamic EPF is stored in the file system. When a user invokes a
dynamic EPF, PRIMOS automatically maps the EPF into special dynamic
segments set aside in that user’s private address space. Then, during execution,
PRIMOS resolves the dynamic links to other resources called by the dynamic
EPE

To create a dynamic EPF, you use the BIND linker. The BIND linker creates
dynamic EPFs by default.

Registered EPFs

A registered EPF resolves some of its dynamic links prior to execution, and
resolves other dynamic links during program execution. Registered EPFs are a
shared resource for all users on the system. They are maintained in shared
address space and stored in a special registered EPF database. As of PRIMOS
Revision 23.0 and Translator Family Revision T3.0, most system and language
libraries supplied by Prime are registered EPFs (a complete list of these libraries
is found in Appendix D). As of the Translator Family Rev. T3.0, BIND supports
new options that permit you to create your own registered EPFs.

J

Note

Introduction to EPFs

Creating a registered EPF is a two-step process: first you create the EPF using
the BIND linker, specifying that the EPF will be a registered EPF. Then the
System Administrator registers the EPF.

This book uses the general term registered EPF for this type of EPF whether or not the
EPF has, in fact, been registered. The term registrable EPF is only used when it is
essential to refer to the file system object version of the EPF,

When an EPF is registered, PRIMOS automatically allocates space for it from
available shared dynamic segments, resolves dynamic links to external routines,
and performs a variety of initialization tasks. PRIMOS resolves the remaining
dynamic links during execution of the EPE.

A registered EPF remains registered (and occupies system resources) either until
the System Administrator unregisters the EPF or until system cold start. A cold
start unregisters all registered EPFs.

Registered EPFs are especially useful for programs and libraries that are widely
used on a system. Because much of the initialization and resolution of dynamic
links is performed at registration time, rather than each time the program is
executed, registered EPFs can be more efficient than dynamic EPFs for many
applications. Because at least part of a registered EPF is mapped to shared
memory, registered EPFs occupy less space in the user’s private address space.
Chapter 6 discusses registered EPFs and includes information you can use to
decide whether a given EPF is a good candidate for registration.

Program and Library EPFs

Both dynamic EPFs and registered EPFs can contain any type of executable
code. An EPF can contain an application program, a command, a command
function, or a library of subroutines. You create programs, commands, and
functions with program EPFs. You create subroutine libraries with library
EPFs.

Program EPFs

Program EPFs are programs with a single main entrypoint. You can invoke a
program EPF directly from the command line. You can also invoke a program
EPF indirectly from a running program by calling one of the PRIMOS
subroutines that invokes a program EPE. Chapter 4 gives specific information
about program EPFs.

Second Edition 1-3

Advanced Programmer’s Guide I: BIND and EPFs

Library EPFs

Library EPFs are collections of routines. Each library EPF contains one or more
entrypoints. Programs invoke the routines in library EPFs by calling the
entrypoints. PRIMOS links programs to routines in library EPFs dynamically.
Chapter 5 discusses the library mechanism and library EPFs.

BIND establishes dynamic links from an EPF to called routines. The routines
called by the EPF reside in runtime libraries. A runtime library is a collection
of executable routines that can be called by many programs. A runtime library
can be a library EPF, a shared static-mode library, or a PRIMOS direct entry.

Routines in a runtime library never become a part of the runfile of the EPF that

calls them. Instead, each EPF contains dynamic links that enable PRIMOS to

find and execute the routines at runtime. PRIMOS uses your ENTRY$ search

list to locate your runtime libraries. Chapter 5, Library EPFs, discusses runtime \
libraries in detail. |

Routines in a library EPF can call other routines in the same library EPF or
another library EPF. Because the links between an EPF (of any type) and its
called routines are dynamic, you can create program EPFs and library EPFs in
any sequence. (Some restrictions apply to the registration of registered EPFs, as
described in Chapter 2.)

Library routines can be altered, rebuilt, and relocated on the system without

requiring you to relink applications that call them. When updating a library ‘\
routine, just make sure that you have not altered the parameter interface between ‘
the routine and its calling programs.

Creating and Using EPFs

1—4 Second Edition

The steps required to create and use an EPF are

1.

N

SO S

Create the source code in a high-level language or PMA.

Compile or assemble the source code using a Prime compiler or the PMA
assembler.

Use the BIND linker to create the EPF.

Install the EPF in an appropriate location.

For registered EPFs, have the System Administrator register the EPF.
Execute the EPF.

J

)

Introduction to EPFs

Source Code

A program EPF contains a main routine and may optionally contain internal
subroutines. A library EPF contains only subroutines. Both program EPFs and
library EPFs can contain calls to external routines.

For high-level languages there are no restrictions on coding. You can create all
types of EPFs with any Prime language. However, not all compilers create code
that takes full advantage of registration. See Chapter 6 for information on which
languages fully support registered EPFs. Appendix A gives complete
information on writing EPFs in PMA.

Compiling

Compile or assemble your source code using a Prime compiler or the PMA
assembler. You can create either V-mode (the default) or I-mode object code. If
you are creating a registered EPF, be sure to use a version of the compiler that
supports registered EPFs.

Linking With BIND

You generate all types of EPFs using the BIND linker. Because of the flexibility
of the EPF format, most linking with BIND is straightforward. You use BIND
subcommands to specify whether to generate a dynamic or registered EPF and
whether it is to be a program or library EPE. BIND generates a dynamic
program EPF by default. If you specify that the EPF is to be a registered EPF,
the executable file created by BIND is referred to as a registrable EPF. A
registrable EPF must be registered before it can be executed as a shared program
or library. However, you can test a registrable EPF prior to registering it, as
described in Chapter 6.

BIND links but does not load your EPF. Instead, BIND organizes your runfile in
EPF format so that PRIMOS can load it dynamically at invocation or registration
time. This means that you almost never need to concern yourself with the
location of the EPF code and data in memory. BIND and PRIMOS automatically
take care of allocating memory, loading, and sharing, as well as replacing earlier
versions.

The input to BIND is one or more binary files (.BIN files). These binary files
can be output from a compiler and contain object code for a program or a group
of library routines. BIND also takes as input binary libraries. A binary library
is a binary file created using EDIT_BINARY that contains linkage information
from one or more library EPFs. You can set your BINARY$ search rules to
enable BIND to locate binary files and binary libraries by filename, rather than
supplying a complete pathname. The output from BIND is an EPF, an
executable code file (RUN file). It can be a program EPF or a library EPF.

Second Edition 1-5

Advanced Programmer’s Guide I: BIND and EPFs

1-6

Second Edition

This guide includes specific information on linking library EPFs in Chapter 5
and registered EPFs in Chapter 6. For a complete reference of all BIND
subcommands, refer to the Programmer’s Guide to BIND and EPFs.

Installing EPFs

Dynamic program EPFs are ready to execute as soon as they have been linked
with BIND. PRIMOS automatically takes care of loading when you invoke the
EPF. For dynamic program EPFs, the only installation needed is to copy the
EPF to a useful location in the file system. If you wish, you can also alter users’
COMMANDS search lists so that the program EPF can be run as a command.
For more information on installing dynamic program EPFs, see Chapter 4.

For dynamic library EPFs, install the program in the file system and update
either the system or individual users’ ENTRY$ search lists. For library EPFs
you may also want to create a matching binary library with dynts (dynamic
links) to the routines in your library EPF.

Registered EPFs are installed by the System Administrator.

Registering EPFs

A registrable EPF must be registered by the System Administrator. Registration
is simple, because PRIMOS automatically takes care of allocating shared
memory to registered EPFs. Once an EPF is registered, it is available to all users
as acommand. For information on registering EPFs, see Chapter 6.

Executing EPFs

Execution of an EPF consists of two steps: invocation and execution. When an
EPF is invoked, PRIMOS allocates resources and initializes values. As an EPF
executes, PRIMOS encounters calls to routines, and, if necessary, resolves the
dynamic links to those routines.

Users can use the RESUME command to execute any program EPF to which
they have sufficient access rights. You can use COMMANDS search rules to
make a dynamic program EPF available as a command. All registered program
EPFs are automatically available as commands when using the default
COMMANDS search rules. A program EPF can also be executed using a
PRIMOS subroutine call, for example, EPFSRUN.

Library EPFs are executed indirectly. A program EPF calls specific entrypoints
in the library EPF.

J

J

r
~

3

)

Introduction to EPFs

EPFs and Static-mode Applications

Virtually all static-mode applications can be converted to EPFs. The EPF
versions give equal or better performance, allow applications to take advantage
of the far more flexible EPF environment, and greatly simplify installation and
maintenance. V-mode and I-mode object files can usually be converted simply
by relinking with the BIND linker. R-mode object files must be recompiled as
V-mode or I-mode. Static-mode programs that share dynamic links to reduce
dynamic linking overhead can be converted to registered EPFs with no loss of
performance. Appendix C compares the BIND and SEG linkers and discusses
converting static-mode programs to EPFs.

Second Edition 1-7

7 Dynamic Linking

)

EPF Principles

This chapter introduces some of the basic elements of EPF technology:

e Dynamic linking
¢ EPF organization

e EPF mapping

These elements are used by EPFs of all types. You should find the definitions
and descriptions given in this chapter useful as you read the discussions of
specific applications throughout the rest of this book.

This section describes the logical connections between an EPF and the external
routines that it calls.

Dynamic linking creates flexible connections between EPFs and routines in
runtime libraries. Dynamic linking keeps EPFs and the routines that they call
functionally and physically separate. This greatly simplifies program
maintenance. Both program EPFs and library EPFs can contain dynamic links to
their called external routines. They do not use dynamic links to their own
internal routines.

A dynamic link established by BIND is known as a dynt. A dynt specifies the
name of a called routine, but does not specify its location. To determine the
actual location of a routine, PRIMOS resolves the dynamic link. This is also
referred to as snapping the dynt. PRIMOS snaps these dynts to point to the
actual routines either when the EPF is executed or when it is registered.

There are two types of dynts, per-user dynts and shared dynts. These dynt
types are snapped at different times. Both dynamic EPFs and registered EPFs
can contain per-user dynts. PRIMOS snaps per-user dynts as they are
encountered during program execution. Only registered EPFs can contain
shared dynts. PRIMOS snaps shared dynts at registration time, thus reducing
dynamic linking overhead during program execution.

Second Edition 2-1

Advanced Programmer’s Guide I: BIND and EPFs

This dynamic linking mechanism simplifies EPF development and maintenance
and reduces the use of system resources.

Creating Dynamic Links

To execute a called routine, PRIMOS must determine the address of the routine
in a runtime library. When the BIND linker builds an EPF, it establishes
dynamic links to all called routines; it does not install the actual addresses of the
called routines in the EPF. Instead, PRIMOS resolves these dynamic links to the
actual addresses of called routines as needed.

A dynamic link (or dynt) is a two-part object. It consists of an Indirect Pointer

(IP) and a character varying string that contains the name of the called routine.

PRIMOS modifies the IP when it resolves the dynamic link; therefore BIND ‘\
stores the IP in a modifiable data segment. PRIMOS does not modify the name ‘
string; therefore BIND stores this part of the dynt in a nonmodifiable procedure

segment.

The first bit of the IP is the fault bit. BIND automatically sets this fault bit to 1
to tell PRIMOS that the IP does not contain the actual address of the routine.
Such an IP is called a faulted IP. The rest of the IP contains the address of the
name string for the routine.

Resolving Dynamic Links

PRIMOS resolves a dynamic link by resetting the faulted IP with the address of
the routine. PRIMOS determines the actual location of the routine by searching
runtime libraries, either during program execution (per-user dynts) or during
registration (shared dynts).

PRIMOS accesses the user’s ENTRY$ search list to determine which runtime

libraries to search. PRIMOS searches these runtime libraries in the sequence

specified in ENTRY$. Each runtime library contains an entrypoint table, which '\
lists its available entrypoints. PRIMOS reads the entrypoint table in each '
runtime library. When PRIMOS locates an entrypoint name that matches the

dynt’s name string, PRIMOS snaps the dynt.

Each element in an entrypoint table contains a pointer to an Entry Control
Block (ECB). PRIMOS follows this pointer to the entrypoint’s ECB. The ECB
contains a pointer to the entrypoint itself, the first instruction of the routine. (A
shortcalled routine stores the address of the entrypoint itself in the entrypoint
table; it does not use an ECB.)

When PRIMOS locates the entrypoint, it returns to the dynt in the calling
program. PRIMOS replaces the address in the faulted IP with the actual address
of the entrypoint, then resets the fault bit to zero. This process is called
snapping the dynt.

J

2-2 Second Edition ,\

A

Note

EPF Principles

PRIMOS then retries the call by reexecuting the PCL instruction, using the
newly modified IP.

Per-user dynts: With dynamic EPFs and the non-shared portions of registered
EPFs, PRIMOS snaps dynts as it encounters them during execution. These are
per-user dynts. The first time PRIMOS encounters a call to a particular routine
during program execution, it checks the indirect pointer. Because the fault bit of
the indirect pointer is set, a pointer fault occurs. PRIMOS then attempts to snap
the dynt and retry the call.

Shared dynts: With registered EPFs, PRIMOS snaps all shared dynts at
registration time. Since these dynts are snapped before execution time, they do
not change during program execution and can be shared along with the pure
procedure code. Because shared dynts are presnapped, the same program may
execute faster as a registered EPF than as a dynamic EPF.

A registered EPF cannot share dynts to routines in a dynamic library EPF. A
registered EPF can only share dynts to registered library EPFs and PRIMOS
direct entries. At registration time, PRIMOS searches only those library EPFs
that have already been registered. At that ime PRIMOS snaps the shared dynts
to the routines found in those runtime libraries. PRIMOS snaps the per-user
dynts in the registered EPF when a user executes the EPF.

Dynamic Linking Errors

When PRIMOS attempts to snap a dynt it may not find the named routine.
During program execution, this usually happens because the library containing
the routine is not named in the user’s ENTRY$ search rules. If PRIMOS cannot
successfully snap a dynt at runtime, it signals a LINKAGE_FAULTS$ condition.
Unless intercepted by a program, this condition results in a display like the
following:

Error: condition “LINKAGE FAULTS$” raised at 4243(3)/1031.
Entry name “INIT LINE” not found while attempting to
resolve dynamic link from procedure “TRY ASYNC”.

ER!

Here, INIT LINE is the name of the routine that could not be found,
4242/1031 is the address of the instruction that referenced a faulted IP for
INIT_LINE, and TRY ASYNC isthe name of the procedure making the
reference.

PRIMOS is not always able to determine the name of the procedure making the reference
that produces the linkage fault error. For example, procedures compiled in FTN do not
identify themselves to PRIMOS; therefore, PRIMOS produces a shorter message.

Second Edition 2-3

Advanced Programmer’s Guide I: BIND and EPFs

EPF Organization

2-4 Second Edition

For example,

Error: condition “LINKAGE FAULTS$” raised at
4347(3) /10246.

Entry name “GETLIN” not found.

ER!

When the System Administrator registers an EPF, PRIMOS attempts to snap all
shared dynts. If PRIMOS cannot snap a shared dynt at registration time, it
places the EPF in a suspended state. This EPF is not fully registered. PRIMOS
does not permit the execution of a registered EPF until all shared dynts have
been successfully snapped. If the routine referenced by a shared dynt isina
library EPF that has not yet been registered, PRIMOS cannot snap the shared
dynt. When the System Administrator registers this library EPF, PRIMOS
automatically snaps the shared dynt in the suspended EPF and changes the state
of the suspended EPF to ready. This process is discussed in detail in Chapter 6,
Registered EPFs.

This section describes the physical organization of the different components of
an EPF.

Segment Types

BIND organizes EPFs into segments. Which segment holds a given part of an
EPF depends mainly on whether the code in that part is modified at runtime.
The precise organization varies according to the compiler used, the linking
procedure, and the type of EPF. For dynamic EPFs, BIND gathers pure
procedure code into one or more shareable pure procedure segments and puts
linkage and static data into one or more per-user linkage/data segments. For
registered EPFs, BIND puts shareable linkage and pure procedure code together
in shared linakge/data segments and per-user linkage and static data in
non-shared linkage/data segments. For both types, BIND places any impure
procedure code in non-shared impure procedure segments.

When PRIMOS maps an EPF to memory, it allocates space in an appropriate
memory area for each segment. Because BIND organizes an EPF into
segments, but PRIMOS does not allocate memory space to these segments until
later, all EPF segments are known as dynamic segments. The EPF Mapping
section below explains the process of mapping EPF segments to memory.

J

J

A

A

Note

EPF Principles

EPF Format

The EPF runfile created by BIND is not simply a memory image. EPFs are
stored in a generalized format that allows PRIMOS to map them efficiently into
any available dynamic segments. This format includes compressed descriptions
of linkage/data segments and imaginary addresses.

Linkage/Data Description: BIND stores EPF linkage/data segments as
compressed descriptions rather than memory images. BIND classifies
linkage/data into a variety of types such as ECBs, IPs, repeated data, and the
like. The linkage/data description consists of entries naming specific types along
with blocks of actual data for each entry. When PRIMOS maps an EPF, it
expands these descriptions to create the contents of each linkage/data segment.
To expand a description, PRIMOS fills in templates for each linkage/data type
using the blocks of data contained in the description.

¢ A dynamic EPF runfile contains a memory image of the pure procedure
code portion of the EPF and a compressed description of the per-user
linkage and data. PRIMOS creates a copy of the per-user portion by
expanding this compressed description.

e A registrable EPF runfile contains descriptions of shareable code, linkage,
and data. PRIMOS generates the contents of both the shared and per-user
segments from these descriptions.

Imaginary Addressing: BIND does not use actual absolute memory
addresses when creating an EPF runfile. Instead, it assigns each segment an
imaginary segment number and creates imaginary addresses consisting of the
imaginary segment number and an offset. For example, in a dynamic EPF, the
first procedure segment is imaginary segment number +0. The imaginary
address of the 1000th address in the first procedure segment is therefore
+0/1000. (Note that all addresses are in octal.)

BIND must use imaginary addresses because PRIMOS can map an EPF to any
available locations in a user’s virtual address space. For example, an IP in
per-user linkage that points to a location in the procedure code must use the
imaginary address of that location. When PRIMOS maps the EPF and creates a
copy of the per-user linkage for a user, it translates the imaginary address to an
actual address in the user’s address space. If, for example, PRIMOS maps
segment +0 in the above example to a user’s segment 4771, then an IP that
points to the imaginary address +0/1040 is set to point to the actual address
4771/1040.

Not all imaginary segments are loaded so that they begin at offset 0 of an actual segment.
Therefore, PRIMOS may also adjust the imaginary address offset when it creates the
actual address. For example, linkage/data segments can be loaded anywhere in a
read/write segment; they could begin at some non-zero offset in an actual segment.

Second Edition 2-5

Advanced Programmer’s Guide I: BIND and EPFs

EPF Mapping

2-6

Second Edition

Chapter 8 shows you how you can use imaginary and actual address information
to examine an EPF in memory.

The different parts of dynamic and registered EPFs are mapped to different
locations in memory. PRIMOS maintains Descriptor Table Address Registers
(or DTARSs) for EPF memory addressing as follows:

¢ DTAR1 — shared memory segments
¢ DTAR?2 — per-user memory segments (user assigned)
¢ DTAR3 — per-user memory segments (system assigned)

Refer to the System Architecture Guide for further details.

Both the pure and per-user parts of dynamic EPFs are mapped to unused
segments in DTAR?2 during program execution. The number of DTAR2
segments available for dynamic allocation can be set by the System
Administrator. PRIMOS maps dynamic EPFs only to these dynamic segments,
assuring that data in static segments is never corrupted by EPF memory usage.

Both the pure and per-user parts of registered EPFs are mapped to DTAR1
segments at registration time. At the same time, PRIMOS reserves virtual
DTAR3 segment numbers to hold the per-user part of the EPF. PRIMOS
maintains a list of DTAR3 segments reserved for each registered EPF. These
DTAR3 segments are used when a user invokes the registered EPE. When a user
invokes the EPF, PRIMOS copies the image of the per-user part in DTAR1
directly to these reserved DTAR3 segments. All references to addresses in the
per-user part are adjusted to point to locations in the reserved DTAR3 segments.
Therefore, unlike a dynamic EPF, the per-user part of a registered EPF is
mapped to the same virtual location in every user’s virtual address space.

EPF Sharing

PRIMOS shares registered EPFs automatically at registration time by placing
shareable code and linkage in DTAR1 segments that are part of every user’s
address space. (The —public search rule must be set to support EPF sharing, as
described in Chapter 6.)

PRIMOS shares dynamic EPFs using Virtual Memory File Access. Virtual
Memory File Access (VMFA) provides two important benefits:

e Pure code can be paged directly from the file system copy.

e All users can share the same copy of the pure code.

J

9

D)

EPF Principles

For pure code, VMFA pages the physical memory copy of the EPF file image
directly from the file system copy of the dynamic EPF. Because the EPF file
image does not change, PRIMOS does not need to write it out to the paging disk.
The physical memory copy is simply overwritten. PRIMOS can always page in
anew copy directly from the file system.

PRIMOS uses the address translation mechanism to map the same physical
memory copy of the pure code to each user’s virtual address space. Once a
dynamic EPF is mapped into one user’s address space, the same physical
memory copy is mapped to available segments in any subsequent user’s virtual
address space. Since the EPF file image contains the pure portion of the
dynamic EPF, the same copy of the pure code is shared by all users who invoke
this dynamic EPF.

Only the impure portion of a dynamic EPF is not shared in this way. After
PRIMOS maps the EPF, it allocates space for per-user data and linkage from the
dynamic segments in each user’s address space. PRIMOS then initializes these
areas by expanding the compressed description contained in the EPF file image.
It changes imaginary addresses to actual addresses in the user’s virtual address
space. For example, IPs in the linkage/data segment that point to imaginary
addresses are changed to point to the actual addresses in the user’s virtual
address space.

Second Edition 2-7

The Life of an EPF

All EPFs pass through a number of phases. Depending on the EPF type, these

r phases may occur at different times and in different order. Some phases only
occur with certain EPF types. This chapter outlines the steps that EPFs go
through as they are created and run, and tracks the life of some typical EPFs
through all phases.

The Life of a Dynamic Program EPF

r A dynamic program EPF typically goes through the following phases:

1. You write and compile or assemble the program.
2. You use BIND to build an EPE.
3. You invoke the EPE

o PRIMOS maps the pure procedure portion of the EPF to memory.
r o PRIMOS allocates the impure linkage/data portion of the EPF.
o PRIMOS initializes the impure linkage/data portion of the EPF.

PRIMOS calls the main entrypoint of the EPF, beginning execution.
PRIMOS resolves dynamic links encountered in the EPF during execution.
The EPF terminates, retumning to its caller.

N o wn s

You or PRIMOS remove the EPF from memory.

The first time you invoke a dynamic program EPF during a terminal session, it
must pass through all phases except the last one. On subsequent invocations,
PRIMOS may be able to skip some or all of the mapping, allocation and
initialization phases.

3

Second Edition 3-1

Y

Advanced Programmer’s Guide I: BIND and EPFs

3-2

Second Edition

Compiling or Assembling

When you compile (or assemble in the case of PMA) your source code, you
create an object code file, also referred to as a .BIN file. This .BIN file contains
procedure text and linkage/data text. The procedure text consists of the program
instructions and constant data. The linkage/data text consists of

e Static data that can be initialized when the program is invoked

¢ Entry Control Blocks (ECBs) for the main entrypoint and internal
subroutines

¢ Extemal linkage information such as IPs and dynts to external routines

The compiler can determine some of this linkage/data text. It establishes initial
values for static data and most of the contents of the ECBs. However, the actual
locations of the procedure and linkage frames remain unknown, and all external
references remain unresolved.

The linkage part of the text includes information about unknowns that are
resolved by linking the program with BIND. For example, compiling a call to an
external routine, SUBR_A, generates linkage text that indicates the need for an
indirect pointer (IP) to SUBR_A at a certain location in the linkage frame.

When you link this program, BIND creates the IP.

Building With BIND

The BIND linker resolves the unknown addresses and external references in your
object file. As you load object files, BIND builds up the procedure and
linkage/data segments of your EPF. BIND places the procedure code in
procedure segments and linkage and static data in the linkage/data segments. As
each element is placed, BIND determines its imaginary address.

Once BIND has determined the imaginary address of an element, BIND is able
to resolve references to the element. For example, once BIND has determined
the imaginary addresses of a procedure’s linkage and procedure frames, those
addresses can be placed in the procedure’s ECB.

External References: BIND maintains and updates a list of external
references as you build your program. For example, if you load a module called
MY_PROG that calls an external subroutine called SUBR_A, BIND adds
SUBR_A to the list of unresolved references in MY_PROG’s linkage.

BIND handles two types of external references:

e References to routines loaded during the BIND session

e References to routines in runtime libraries

J

J

b

N

The Life of an EPF

If the referenced routine is in a module that you load as part of the BIND session,
BIND handles the external reference by generating an imaginary address. That
is, BIND creates an IP that points to the actual location of the subroutine’s ECB
in the linkage text. For example, if you load SUB_A.BIN (using the LOAD
subcommand), BIND places the procedure and linkage of SUB_A in procedure
and linkage segments. Included in SUB_A’s linkage is SUB_A’s ECB. BIND
can now place the imaginary address of SUB_A’s ECB in an indirect pointer (IP)
in MY_PROG’s linkage. This resolves MY_PROG's external reference to
SUB_A.

If the referenced subroutine is in a runtime library, BIND handles the external
reference by creating a dynt. During the BIND session, you can either explicitly
load the appropriate binary library or you can issue the DYNT subcommand.
The DYNT subcommand searches your binary libraries to resolve external
references. For example, suppose MY_PROG calls an external subroutine,
called SUB_B, that resides in a library EPF. You begin the BIND session by
loading MY_PROG:; BIND adds SUB_B to the list of unresolved references in
MY_PROG's linkage. If you then give the subcommand DYNT SUB_B, BIND
does two things:

e BIND places the character string “SUB_B” in MY_PROG'’s procedure
text. (Since the string is a constant, it can go in a pure segment.)

e BIND creates a dynamic link in MY_PROG's linkage text. It sets the fault
bit of the dynamic link to 1 (making it a faulted IP) and places the
imaginary address of the character string “SUB_B” in this faulted IP.

This resolves the reference to SUB_B. BIND can accomplish the same result if
you load the dynt with a binary library.

At the end of a successful BIND session, all previously unresolved references in
your program have been resolved to either imaginary addresses or dynts.

Main Entrypoint: In addition to resolving references, BIND determines the
entrypoints of your EPF. A program EPF has only one entrypoint. By default,
BIND uses the first procedure loaded as the main entrypoint. You can specify a
different entrypoint with the MAIN subcommand.

Program Invocation

You can invoke a program EPF in one of three ways:

e Directly from a command line: as a program (using the RESUME
command), as a command, or as a function

e From a program that calls the EPFSRUN subroutine

e From a program that calls the CP$ subroutine

Second Edition 3-3

Advanced Programmer’s Guide I: BIND and EPFs

Note

3—4 Second Edition

When you invoke a program EPF (using any of these methods), PRIMOS
automatically performs several operations that prepare it for execution. These
operations are normally invisible to the user. They include

e Pure procedure mapping
¢ Linkage/data allocation
¢ Linkage/data initialization

PRIMOS performs these operations by calling a series of subroutines. The
specific subroutines responsible for each step are noted in the descriptions that
follow. Normally you need not call these subroutines; PRIMOS automatically
calls them you when you invoke a program EPF from the command line or with
the EPFSRUN or CP$ subroutines. However, you can call these subroutines if
you wish to perform any of the EPF mapping, initialization, and invocation steps
individually. These EPF-related subroutines are documented in detail in
Subroutines Reference I1: File System and in Advanced Programmer’s Guide 111:
Command Environment.

If the EPF has been invoked previously, some of these steps may already be
complete. When you invoke an EPF, PRIMOS checks to see if a step may be
omitted. In the case of a dynamic program EPF, the EPF may still be mapped as
a result of a previous invocation. If this is the case, PRIMOS skips the mapping
step.

Procedure Invocation: You should note the difference between program
invocation as described above, and procedure invocation.

The basic functional unit of EPF organization is the procedure. A procedure
includes executable code, linkage, and data. Every procedure has an entrypoint,
defined in its linkage by an Entry Control Block (ECB), that allows the
procedure to be called in an orderly way. A given EPF may consist of one or
more procedures.

Procedures are functional units. The actual organization of an EPF in memory is by
segments. Different parts of a procedure are placed in different segments, and given
segment may contain code from many procedures. See Chapter 2 for a discussion of EPF
organization.

Whether a procedure is contained in a program EPF or a library, PRIMOS
invokes it in essentially the same way. Normally, procedures are invoked by
executing a PCL instruction that addresses the first location in the procedure’s
ECB (or a faulted IP, which is resolved to point to the ECB). The PCL
instruction allocates a stack frame for the called procedure, passes any arguments
and causes execution to jump to the first executable instruction of the procedure.
This sequence of events is called procedure invocation. (Procedures can also
be called by various jump instructions without using an ECB or allocating a
stack frame. These are called short calls and quick calls.)

J

J

)

b

The Life of an EPF

Procedure invocation occurs in two circumstances:

¢ A running procedure calls a procedure that has been linked to it.

e A program EPF is invoked either from the command line or from another
program.

When you invoke a program EPF, the EPF$ subroutines take care of mapping
and initializing the EPF, process the command line, and finally invoke the EPF’s
starting procedure. In other words, the last step of program invocation is a
procedure invocation.

The term invocation is also frequently used to mean the running of a procedure
from the point when it is invoked to the point when it terminates and returns to
the invoking procedure. In this sense, a given program invocation consists of
one or more (usually many more) procedure invocations. A process typically
consists of many program and procedure invocations.

Typically, a program EPF calls several subroutines, which in turn call other
subroutines, and so on. All the subroutines called, both directly and indirectly,
by a given program invocation are considered to be part of that invocation.

Pure Procedure Mapping

To map a dynamic EPF, PRIMOS allocates sufficient dynamic segments to hold
all of the pure procedure segments. PRIMOS maps the imaginary segment
number of each procedure segment (+0, +2, +4, and so on) to one of the
allocated dynamic segments.

PRIMOS does not actually read the procedure text in from the file system at this
point. Instead, PRIMOS pages the procedure text in from the file system during
program execution. As the program executes, PRIMOS uses the virtual memory
mechanism (VMFA) to page data from the file containing the EPF directly into
the allocated procedure segments. PRIMOS automatically pages in the
procedure text during execution on an as-needed basis. Because the virtual
memory mechanism does not allow segments mapped in this way to be
modified, PRIMOS sets access to these segments so that they cannot be written
by the user or the program. Virtual memory mapping is described in detail in
Chapter 8.

The subroutine EPFSMAP carries out EPF mapping.

Linkage Allocation

PRIMOS also allocates sufficient dynamic space to hold all of the linkage/data
and any impure procedure segments required by the EPF. PRIMOS sets the
access to these segments so that they can be written to by the user or by the
program. The subroutine EPFSALLC carries out linkage allocation.

Second Edition 3-5

Advanced Programmer’s Guide I: BIND and EPFs

3-6

Second Edition

Linkage Initialization

Once space for the linkage segments has been allocated, PRIMOS reads in the
linkage description from the EPF file and expands it to create the contents of the
linkage segments. PRIMOS converts imaginary addresses into actual addresses
in virtual memory. PRIMOS sets the IPs for each internal subroutine to contain
the virtual address of that subroutine. PRIMOS sets the faulted IPs for each

external routine to contain the virtual address of the character string that hold the
dynt name.

PRIMOS also copies any impure procedure code into impure segments during
this phase.

The subroutine EPFS$INIT carries out linkage/data initialization.

Entrypoint Invocation

At this point, the EPF is ready to execute. PRIMOS executes a PCL instruction
to the ECB of the main entrypoint, and the EPF code begins to execute.

The subroutine EPFSINVK invokes the main entrypoint of a program EPF.

Resolving Dynamic Links

PRIMOS resolves dynamic links (snaps dynts) as it encounters calls to external
routines during program code execution. The first time PRIMOS executes a call
to a particular external routine, it resolves the dynamic link. Subsequent calls in
that program to the same external routine often use the same resolved dynamic
link.

PRIMOS recognizes an unresolved dynamic link when it encounters a faulted IP.
The faulted IP generates a fault condition. This brings the dynt snapping
mechanism into play, as described in Chapter 2.

When the dynt is snapped, PRIMOS replaces the faulted IP with an IP containing
the actual address of the routine in virtual memory. PRIMOS then reissues the
call to the external routine.

Subsequent calls to the routine through the same IP are executed without
producing a fault condition. Calls to the same routine from other parts of the
program may be made through different faulted IPs. In this case, these dynts still
need to be snapped.

In practice, few programs ever resolve all of their dynamic links. PRIMOS only
resolves the dynamic links of those external routines that are actually called.
Your program may contain references to external routines that are not called
during every execution of the program. Dynamic links to those routines remain
unsnapped during invocations when the routines are not referenced.

J

)

)

Note

Note

The Life of an EPF

EPF Termination and Reinvocation

Normally, a program EPF terminates by returning to the routine that invoked it
(the EPF$INVK subroutine).

An EPF may also terminate and return to command level by calling the EXIT routine.
This is not usually recommended since this defeats some features of the flexible EPF
command environment,

When an EPF terminates, PRIMOS marks the linkage area used by that
invocation for reinitialization. PRIMOS does not deallocate the linkage area. If
the EPF is subsequently reinvoked from the same command level, the linkage
area does not need to be reallocated, just reinitialized. When the linkage area is
reinitialized, only program data and IPs are actually reset, saving startup time.

PRIMOS resets all faulted IPs in order to be sure that any program-class libraries
called are properly reinitialized when the program is run again. See the
discussion of library initialization in Chapter 5.

PRIMOS deallocates an EPF linkage area only when the command level that
invoked it is released or the EPF is removed from memory. When the same EPF
is invoked at more than one command level, PRIMOS allocates a separate
linkage area for each command level. Only the linkage area for the current
command level is deallocated unless the other command levels are released. By
keeping linkage areas independent, PRIMOS assures that suspended program
invocations are not affected by the current invocation.

When a program EPF terminates, PRIMOS also deallocates dynamically
allocated memory acquired during execution.

If your program EPF is called as a command function, it normally allocates space for the
returned string using the ALSSRA or ALCSRA subroutines. It is the responsibility of the
calling program to deallocate this space using the FRESRA subroutine. If you call an
EPF as a command function from another program, you should have the calling program
deallocate the returned string space. Refer to the Advanced Programmer’s Guide 111 :
Command Environment for further details.

Removing an EPF From Memory

PRIMOS tries to keep dynamic program EPFs mapped to memory after they
terminate. PRIMOS places information about a terminated EPF in a data
structure called the EPF cache. While the EPF is in the cache, it remains
mapped to memory. If the EPF is reinvoked while in the cache, it need not be
remapped. This helps reduce startup time.

EPFs that have terminated but remain mapped are listed as (not active) by
the LIST_EPF command.

Second Edition 3-7

Advanced Programmer’s Guide I: BIND and EPFs

When the number of EPFs mapped to memory becomes too large, PRIMOS
removes the oldest inactive EPF from the cache and unmaps it. If the EPF’s

linkage/data segments are still allocated, PRIMOS deallocates them at the same
time.

You can explicitly remove inactive EPFs with the REMOVE_EPF command.
The subroutine EPF$DEL also handles EPF removal.

The Life of a Dynamic Library EPF

3-8 Second Edition

A dynamic library EPF must pass through the same stages as a program EPF,
although the order and details differ in some cases. This section explains the
important differences.

e A library EPF is invoked only when PRIMOS snaps a dynt to it.

e PRIMOS maps the pure portion of a dynamic library EPF when it
encounters the EPF name in an ENTRY search list. Once a library has
been mapped by a user process, it remains mapped unless the user’s
command environment is reinitialized or the library is explicitly removed.
During subsequent dynt snapping, PRIMOS can skip the mapping phase
for EPFs already mapped.

¢ PRIMOS allocates and initializes the impure portion of a library EPF when
it snaps a dynt to it. PRIMOS decides whether it needs to carry out these
phases depending on the class of the library and whether the calling
program or process has previously snapped another dynt to the same
library.

Invoking and Mapping

A dynamic library EPF is invoked when a running program calls one of its
entrypoints.

PRIMOS must map a dynamic library EPF to search its entrypoints. The first
time a program EPF calls a routine in a library EPF, PRIMOS maps the library
EPE. PRIMOS then searches the entrypoints of that library EPF, attempting to
locate the called routine. If PRIMOS finds the called routine, it snaps the
dynamic link, then reissues the call to that routine. Therefore, unlike a program
EPF, a dynamic library EPF is always mapped by the time it is actually invoked
by a call from a running program.

PRIMOS finds the correct library EPF by examining the libraries listed in the
user’s ENTRY$ search list. PRIMOS searches the listed libraries until it finds
one that contains the correct entrypoint. In order to search each library’s
entrypoints, PRIMOS needs to map each library (unless the library is already

J

D

)

The Life of an EPF

mapped). Typically, dynamic linking results in the mapping of many library
EPFs as PRIMOS searches for routines. Dynamic links may not have been
snapped to most of these libraries, but as long as they remain mapped, they need
not be remapped during subsequent dynamic linking.

Linkage/Data Allocation and Initialization

Each time the dynamic linking mechanism snaps a dynt to a library EPF,
PRIMOS determines whether it needs to allocate and initialize the library’s
linkage/data segments. This decision depends on whether the EPF is a program-
class or process-class library and whether it is already in use by the same
program or process. (Whether a library EPF is a program-class or process-class
library is established by the LIBMODE subcommand of BIND. Refer to the
Programmer’s Guide to BIND and EPFs for details.)

Program-class Libraries: PRIMOS maintains a different copy of the
linkage/data segments of a programe-class library for each active program
invocation that calls that library. When a program that calls the library
terminates, the library linkage/data segments used by that invocation are marked
for reinitialization. These segments can be reinitialized and used by a
subsequent program invocation that calls the library.

PRIMOS initializes the linkage/data portion of a program-class library the first
time the library is called by a given program invocation. When snapping a link
to a program-class library, PRIMOS checks to see whether the current program
invocation has already snapped another link to the same library. Ifit has, then
the linkage/data segments have already been allocated and initialized, and
PRIMOS need not repeat these steps.

Process-class Libraries: PRIMOS maintains only one copy of the
linkage/data area of a process-class library for each process that calls the
library. PRIMOS allocates and initializes this linkage/data area the first time a
routine in the EPF library is called by a given user process. When snapping a
link to a routine in a process-class library, PRIMOS checks to see whether the
library has already had its linkage/data allocated and initialized by the same
process. If it has, PRIMOS can skip these steps.

The linkage/data portion of a process-class library is deallocated only when one
of the following happens:

e The user logs out.

¢ The user explicitly removes the library with the REMOVE_EPF command.

e The user’s command environment is reinitialized, either by the
INITIALIZE_ COMMAND_ENVIRONMENT (ICE) command or by an
error condition.

Second Edition 3-9

Advanced Programmer’s Guide I: BIND and EPFs

Calling Routines From a Library EPF

A running program calls a routine in a library EPF. As that library EPF routine
executes, it may itself call routines in other library EPFs. The library EPF calls
the routine, encounters a faulted IP, and resolves the dynamic link. The
mechanism is the same as the one used by program EPFs to resolve dynamic
links.

As these dynts are snapped, PRIMOS needs to decide whether to initialize the
called libraries. When making this decision, PRIMOS considers the calling
library to be part of the program invocation that called it, either directly or
indirectly. If a called program-class library has already been referenced by the
same program invocation, PRIMOS does not reinitialize its linkage/data.

Termination and Removal

When the program invocation that calls a library terminates, PRIMOS decides
how to dispose of the library. If the library is not linked to another active
program, the library is considered inactive. PRIMOS disposes of the library’s
linkage/data area according to the library type:

e When a program-class library terminates, the linkage/data area for the
terminated program invocation is marked for reinitialization. The area
remains allocated and available for use by another program invocation.

e When a process-class library terminates, PRIMOS leaves the linkage/data
area allocated for the process untouched. Other program invocations that
call the library from the same process use the same linkage/data area
without reinitializing it.

Both program-class and process-class libraries remain mapped after the program
invocations that called them have terminated. You can remove inactive libraries
of both types from your address space with the REMOVE_EPF command.

The Life of a Registered EPF

3-10

A registered program EPF goes through a somewhat different set of phases. You
write, compile (or assemble), and use BIND to build the EPF, much as you
would with a dynamic EPF. Then

1. The System Administrator registers the EPF. At this point PRIMOS carries
out several steps:

A. It maps the shared portion to shared memory.
B. It creates an initialized copy of the per-user portion in shared memory.

Second Edition

N\

N\

)

N

Yy D

The Life of an EPF

C. It snaps dynts in the shared portion.
D. It registers the EPF in a table of registered EPFs.

2. You invoke the EPF from the command line or it is invoked from a running
program. PRIMOS then performs the following steps:

A. It maps the initialized copy of the per-user portion to PRIMOS
per-user segments.
B. It invokes the main entrypoint, beginning execution.

C. It snaps per-user dynts as they are encountered during execution.

3. The EPF terminates, returning to its caller.

4, The shared portions of a registered EPF remain mapped to memory until
the EPF is unregistered by the System Administrator.

For more information on registered EPFs, see Chapter 6.

Second Edition 3-11

)

Program EPFs

A program EPF is an executable object designed to be called from the command
line or explicitly from another program. It contains a single main entrypoint that
is invoked when the program is called.

A program EPF can be a dynamic EPF or a registered EPF. Program EPFs are
distinguished from library EPFs, as shown in Figure 4-1. A program EPF has a
single entrypoint; a library EPF may have multiple entrypoints. You can invoke
a program EPF directly from the command line or indirectly via a call to a
Prime-supplied subroutine. You never directly invoke a library EPF; you
execute routines within a library EPF by calling them from a program EPF.
Library EPFs are further described in Chapter 5; special considerations for
registered EPFs are described in Chapter 6.

Dynamic Program EPF
« Single entrypoint
e Direct invocation

Dynamic Library EPF
¢ Multiple entrypoints
e Indirect invocation

Registered Program EPF
« Single entrypoint
 Direct invocation

Registered Library EPF
+ Multiple entrypoints
e Indirect invocation

Figure 4-1. Comparison of Entryname and Invocation Properties of Program

EPFs and Library EPFs

A program EPF can be invoked in three ways:

e Asaprogram

e Asacommand

e As acommand function

Second Edition

Advanced Programmer’s Guide I: BIND and EPFs

You invoke a program EPF as a program by typing the command line
RESUME program _name

You invoke a program EPF as a command by typing the program name. You
invoke a program EPF as a command function by typing the program name in
square brackets as

[program name]

The function returns a string value.

You may also call a program EPF in any of these forms from a running program.
A running program calls a program EPF by using either the CP$ subroutine or
the EPFS$ subroutines. The CP$ subroutine calls a program EPF by passing a
command line to the command processor. You can call both dynamic program
EPFs and registered program EPFs using the CP$ subroutine. The EPF$
subroutines directly invoke a program EPF, giving you greater control over EPF
mapping and execution. These subroutines are documented in the Subroutines
Reference Il: File System and their use is further detailed in the Advanced
Programmer’s Guide I1I: Command Environment. You can call dynamic
program EPFs (and registrable program EPFs) using the EPF$ subroutines; you
cannot call a registered program EPF using these subroutines.

Whether a dynamic EPF can be invoked as a program, command, or command
function depends on how the calling sequence is coded and how the EPF is
installed.

Coding and Compiling

4-2

Second Edition

When you code a program EPF, you specify the calling sequence of its main
entrypoint. Prime recognizes five standard calling sequences. Which calling
sequence you select determines how the program EPF can be invoked. If you
write a program EPF that will be invoked as a program, you normally need not
concern yourself with the calling sequence. If you write a program EPF that will
be invoked as a command, you should code for command line argument passing
and a severity code retumn value. If you write a program EPF that will be
invoked as a command function, you should code for the string value return
mechanism. These calling sequences are described in detail in the Advanced
Programmer’s Guide 111: Command Environment.

Aside from calling sequence specification, there are no important restrictions on
program EPF coding. In order to take full advantage of the EPF mechanism,
program EPFs should be pure code. See Appendix A for information on how to
code program EPFs in PMA.

J

b

-

Yy D

Note

Linking With BIND

Note

Program EPFs

Compiler Options

EPFs must be compiled in V-mode or I-mode. Do not use R-mode. You can use
IX-mode if your compiler supports this extension to I-mode. IX-mode
considerations are further described in Chapter 5.

It is recommended that you do not use the -PBECB compiler option. This
option provides greater locality of reference by placing ECBs in the procedure
text. Since PRIMOS must modify ECBs during program execution, PRIMOS
must store these ECBs and their associated procedure text in impure code
segments that cannot be shared. This typically reduces the performance of an
EPE. However, in some very large programs, the benefits of improved locality
of reference may exceed the performance costs of these impure code segments.

PRIMOS automatically places some ECBs in shared procedure segments when you use
BIND to build a registered EPF. The PBECB compiler option cannot be used to enhance
this aspect of registered EPFs.

When you link a program using BIND, it creates a dynamic program EPF as the
default type. BIND creates a dynamic program EPF unless you specifically
request another type. Linking dynamic program EPFs is usually very
straightforward. For a complete guide, see the Programmer’s Guide to BIND
and EPFs.

Additional information you need if you want to create registered EPFs is given in Chapter
6. Even if you intend to create a registered EPF, you should still understand the material
in this chapter. Most of the material in this chapter is applicable to both kinds of program
EPFs. Furthermore, the recommended procedure for building registered EPFs is to build
and test them first as dynamic EPFs.

Defining the Main Entrypoint

The main entrypoint of an EPF is dctermined by BIND. The BIND linker has a
MAIN subcommand for this purpose. When you use BIND to build the
program, the main entrypoint is one of the following:

e The procedure specified by the MAIN subcommand

e If you do not issue a MAIN subcommand, the first procedure linked during
the BIND session

Second Edition 4-3

Advanced Programmer’s Guide I: BIND and EPFs

Generally, the first procedure in the source code becomes the first procedure in
the object file and, therefore, the first procedure linked by BIND. If you do not
specify the MAIN subcommand, this first procedure becomes the main
entrypoint by default. Usually, when you build a program you allow BIND to
choose the first procedure as the main entrypoint. However, you can always
override this selection by issuing the MAIN subcommand.

Note that the main entrypoint is not necessarily determined by the syntax of the
main procedure declaration in the language you use. Each language has its own
conventions for defining a main procedure:

¢ In F77 the main procedure customarily begins with the PROGRAM
prog_name statement.

e In PL/I the main procedure begins with prog_name PROC
OPTIONS(MAIN).

e In C the main procedure is called main().

Note Appendix A shows you how to write the main entrypoint of a PMA program that is to be
executed as an EPF.

However, none of these statements guarantees that the declared procedure is
considered the main procedure by BIND. This depends on the order in which
procedures are actually linked or on the MAIN subcommand of BIND. For
example, you can write a C program that declares two procedures:

main ()

{

}

subroutine_a ()

{

}
Normally, main is the main entrypoint. However, if you give the command
MAIN subroutine a

during the BIND session, BIND marks subroutine_a as the main entrypoint.
This is not recommended. In fact, if you fail to use the correct syntax for the
main entrypoint, your program may not execute properly. But the possibility of

4—-4 Second Edition

J

Program EPFs

building a program this way does emphasize the fact that BIND rather than the
compiler ultimately determines the main entrypoint.

The MAIN subcommand is useful if you build your programs from many
separate modules. You can link modules in any order and then explicitly declare
the main entrypoint with the MAIN subcommand.

Installation

To install a dynamic program EPF, you place the .RUN file in an appropriate
directory, set the access rights to the EPF, and (if required) set the system or
r_ individual user’s COMMANDS search rules.

To invoke a program EPF as a program, you must place the EPF in a directory to
which all of the program’s potential users have the necessary access rights. To
execute an EPF on a local disk, a user must have Read or Execute rights to the
EPF and Use rights to its directory. To execute an EPF on a remote disk, a user
must have Read rights to the EPF and Use rights to its directory. Access rights
are documented in the PRIMOS Users Guide.

If the EPF is to be called as a command or command function, you must also
include the name of the EPF’s directory in each potential user’s COMMANDS$
r search rules. There are two ways to do this:

¢ Place the EPF in a directory listed in the system’s COMMANDS search
list.

e Place the name of the EPF’s directory in the COMMANDS search list of
every user who will invoke the program EPF as a command or command
function.

Note that a user’s search lists are automatically reset to the system’s search lists
f every time the process is reinitialized (for example, by logging in or issuing the
ICE command). The SET_SEARCH_RULES and LIST_SEARCH_RULES
commands are described in the PRIMOS Commands Reference Guide; the search
rules facility is described in the Advanced Programmer’s Guide I1: File System.

3

Second Edition 4-5

)

Library EPFs

A library is a collection of one or more (usually many) executable routines.
When a program EPF calls an external routine, PRIMOS locates the executable
code for that routine in a library. A library can, in turn, call routines in other

r libraries. This chapter describes how to create and maintain library EPFs. It also
describes libraries that are not EPFs.

A library EPF can be a dynamic EPF or a registered EPF. Library EPFs are
distinguished from program EPFs as shown in Figure 5-1. A program EPF has a
single entrypoint; a library EPF may have multiple entrypoints. You invoke a
program EPF directly; you invoke a library EPF indirectly by issuing calls to its
routines. You can call routines in a library EPF from a program EPF or from
another library EPF. Program EPFs are further described in Chapter 4, special
considerations for registered EPFs are described in Chapter 6. Library EPFs are

’. divided into two classes: program-class and process-class; library classes are

' described in this chapter.

Y)

Dynamic Program EPF
« Single entrypoint
« Direct invocation

Dynamic Library EPF
¢ Multiple entrypoints
« Indirect invocation
¢ Program-class or
process-class

Registered Program EPF
« Single entrypoint
« Direct invocation

Registered Library EPF

e Multiple entrypoints

« Indirect invocation

* Program-class or
process-class

Figure 5—1. Comparison of Properties between Program EPFs

and Library EPFs

Second Edition

Advanced Programmer'’s Guide I: BIND and EPFs

The Library Mechanism

5-2

Second Edition

A library EPF is a collection of routines, each routine having its own entrypoint.
In general, libraries contain many routines related to a given function, compiler,
application, or product. This means that even though a program may call many
routines, BIND can usually resolve these calls by linking to a small number of
libraries. Therefore, storing similar routines in a library EPF saves a great deal
of linking effort, when compared with linking to individually-stored routines.

The library mechanism functions in two stages:

e Atlink time

e Atruntime

At link time, you create the dynts that the dynamic linking mechanism uses at ‘\
run time. In most cases, you do this with BIND by linking to binary libraries

that contain code to create the dynts. You can also create dynts using the DYNT
subcommand of BIND,

At run time, the dynamic linking mechanism resolves these dynts to link your
program EPF to routines contained in runtime libraries of various types. One
type of runtime library is library EPFs. (Registered EPFs resolve some dynts at
registration time, before the program is actually run.)

The library mechanism thus uses two types of libraries: ‘\

¢ Runtime libraries

¢ Binary libraries

Runtime Libraries

A runtime library contains executable versions of routines. A runtime library

can be a library EPF, a shared static-mode library, or a PRIMOS direct entry. A ‘\
program EPF can call routines in a runtime library; a routine in a library EPF can

call other routines in other runtime libraries.

A call to a routine in a runtime library is performed by establishing (at BIND
time) and resolved (at runtime) dynamic links in the calling program. The code
in runtime libraries never becomes a part of the calling program. Instead, BIND
incorporates a dynamic link to each called routine in the calling program. The
next section, Binary Libraries, shows how BIND does this.

EPFs can link dynamically to three types of runtime libraries:
¢ Shared static-mode libraries
e PRIMOS direct entries
e Library EPFs

J

)

)

Library EPFs

Each type of library consists of a collection of routines and a list of entrypoints.
Each type is organized and stored differently, but PRIMOS links to them
dynamically in essentially the same manner. It searches the entrypoint list for the
name of the called routine. If it finds the name, it uses a pointer supplied in the
entrypoint list to resolve the dynamic link to the actual runtime code of the
routine. Chapter 2 explains the dynamic linking process in detail.

Shared Static-mode Libraries: Shared static-mode libraries contain
static-mode routines that are loaded into shared segments. All EPFs that call
routines in shared static-mode libraries execute the same shared copy. As of
Rev. 23.0, registered library EPFs have replaced most shared static-mode
libraries supplied by Prime (refer to Appendix D for details). The remaining
shared static-mode libraries are mainly used by shared static-mode products.

PRIMOS Direct Entries: A PRIMOS direct entry is a routine that is actually
a part of the PRIMOS operating system. Because these routines are part of the
single shared copy of PRIMOS, each EPF that calls them uses the same shared
copy.

You can determine if a called routine is a PRIMOS direct entry when you use
BIND to build the calling program. Use the MAP subcommand of BIND to
observe when references are resolved. PRIMOS direct entries are those
references that BIND resolves when you issue the LIBRARY (LI) subcommand
with no specified library name.

Library EPFs: Library EPFs are EPF runfiles that contain a collection of
routines. You can create your own library EPFs using the BIND linker. Prime
also supplies many library EPFs that contain routines called by various Prime
products.

Binary Libraries

A binary library is a collection of object code modules kept together in one
.BIN (binary) file. You link these modules into your runfile using BIND and
they become part of the runfile. Note the distinction between runtime libraries
and binary libraries: the code in a runtime library is accessed by dynamic links
from your program; the code in a binary library is actually copied into your
program.

Binary libraries may contain the compiled code of subroutines. In this case,
BIND copies the binary code of the called subroutines into your program’s
runfile. The called subroutines become part of your program.

However, most binary libraries do not contain the actual code of subroutines.
Instead, many binary libraries contain the object code for dynamic links to
routines in runtime libraries. BIND copies the dynamic links for called routines
into your program'’s runfile. These dynamic links become part of your program.

Second Edition 5-3

) “N

Advanced Programmer’s Guide I: BIND and EPFs

5—4 Second Edition

Most Prime-supplied binary libraries contain code for creating dynts to routines
in runtime libraries. When you link to these binary libraries, PRIMOS does not
put any actual routine code in your runfile. Instead, it puts in the dynts that it
needs to link to these routines at runtime.

You can use the LIBRARY subcommand of BIND to link such binary libraries.
This is one way to establish dynamic links in your runfile. You can also use the
DYNT subcommand of BIND to create individual dynamic links. Binary
libraries simplify program linking by making it unnecessary to create each dynt
individually. The Programmer’s Guide to BIND and EPFs describes these BIND
subcommands in greater detail.

The dynts in Prime-supplied binary libraries do not necessarily point to routines

contained in any one runtime library. Instead, they point to routines in a variety

of runtime libraries, including both PRIMOS entrypoint libraries (direct entries)

and library EPFs. A specific runtime routine may be referred to by dynts in ‘\
several binary libraries. These binary libraries provide a flexible interface at link

time between your program and the runtime libraries. Because a single binary

library can contain dynts to routines in several runtime libraries, you can usually

resolve all external references in your program by linking to one or two binary

libraries.

Creating Binary Libraries of Dynts: Afier you create a library EPF with

BIND, you can use EDIT_BINARY to create a binary library that contains dynts

to the routines in that library EPF. You can then use BIND to copy this binary A\
library into programs, creating dynamic links to your library EPFs, just as you '
would with Prime-supplied libraries.

You link to Prime-supplied binary libraries by using the LIBRARY subcommand
of BIND. Prime-supplied binary libraries reside in the top-level directory LIB.
The command LIBRARY library _name is functionally equivalent to the
command LOAD LIB>library _name.

You link to your own binary libraries by using the LOAD subcommand of

BIND, or by using the LIBRARY subcommand and supplying a complete

pathname. You can request that your System Administrator place your own ‘\
binary libraries in the LIB directory.

Normally, binary libraries contain code that instructs BIND to link in only the
modules that it needs to satisfy unresolved references. When you link to a
binary library, BIND searches the library for dynts or routines that satisfy
unresolved references and copies them into the runfile.

ENTRYS$ Search List

When the dynamic linking mechanism attempts to resolve a dynamic link, it uses
your ENTRY$ search list to look for the required routine. An ENTRY$ search
list contains a set of search rules that give the order in which libraries should be
searched to find a routine. Each rule is an instruction to search one library or
type of library.

D

)

Library EPFs
The ENTRYS$ search rules may include the following:
—PRIMOS_DIRECT_ENTRIES Tells PRIMOS to search for the routines
among PRIMOS direct entrypoints.
This is always the first rule.
—STATIC_SHARED_LIBRARIES Tells PRIMOS to search shared static-
mode libraries.
EPF _pathname Tells PRIMOS to search for entrypoints
in the named library EPE.
-PUBLIC Tells PRIMOS to search registered
library EPFs.

PRIMOS searches the libraries in your ENTRY$ search list in the order in which
they are listed until it finds a library that contains the requested entrypoint.

PRIMOS provides a set of system default ENTRY$ search rules. These system
default search rules normally contain entries for all Prime-supplied runtime
libraries and any other libraries that the System Administrator has chosen to
install on the system.

An individual user may modify or replace the default search rules by creating a
private ENTRY$ search list. If the applications you run make especially heavy
use of certain runtime libraries, you may want to edit your search rules to put the
names of those libraries close to the top. This can make dynamic linking more
efficient. You may also wish to add your own user-written library EPFs to your
ENTRY$ search list.

However, if you link a program with routines in a user-written library EPF, you
must be sure that every user that runs that program is using an ENTRY$ search
list that contains a search rule for that library. When a running program attempts
to call a routine in a runtime library not included in your ENTRY$ search list,
the program fails, generating a LINKAGE_FAULTS error.

Note that a user’s search lists are automatically reset to the system’s search lists
every time the process is reinitialized (for example, by logging in or issuing the
ICE command). The SET_SEARCH_RULES and LIST_SEARCH_RULES
commands are described in the PRIMOS Commands Reference Guide; the search
rules facility is described in the Advanced Programmer’s Guide I1: File System.

Using the Library Mechanism

EPFs give you complete access to the library mechanism. You can easily create
your own library EPFs with BIND. You can also use EDIT_BINARY to create
your own binary libraries containing dynts to the routines in your library EPFs.
The remaining sections of this chapter show you all the steps you need to follow
to create a library EPF and make it available for use.

Second Edition 55

Advanced Programmer’s Guide I: BIND and EPFs

Coding and compiling
Determining library class
Determining library entrypoints
Building a library with BIND
Creating a binary library
Installing the libraries

o A W=

Chapter 6 shows you how to create a registered library EPF.

Coding and Compiling

5-6 Second Edition

You can write a library in any high-level language or PMA.

Coding Guidelines

The library source code is a collection of subroutines containing no main
program. In PL/I you write a series of procedures with no program procedure. In
FORTRAN 77 you create a set of subroutines or functions. In C you write a set
of functions with no main function.

Routine Names: Usually you use the name you give a routine in the source
code as the library entryname by which the routine is called from other
programs. For example, suppose you define a FORTRAN 77 routine called
SUMSQ using the statement

SUBROUTINE(S,N) SUMSQ

The process of building a library that contains SUMSQ is simpler if you use the
same name in the library’s entrypoint list. Some routine names are reserved for
use by PRIMOS. The section, Determining Library Entrypoints, discusses
library entryname conventions. You can simplify the process of building your
library with BIND if you choose routine names according to these conventions.

Other Coding Guldelines: Routines can use any calling sequence. Declare
parameters and return values according to the conventions of the language you
are using. Library EPF routines differ from the main entrypoint of a program
EPF in this respect. Main entrypoint calling sequences must follow specified
formats, described in the Advanced Programmer’s Guide I11: Command
Environment. Library EPF routine calling sequences impose no such
requirements.

J

3

Note

Library EPFs

The nature of your routine code may affect the class requirements of your
library. The next section explains library classes and gives coding guidelines.

Language Considerations: When choosing a programming language and
designing calling sequences for routines in a library EPF, consider the
requirements of the programs that will call those routines. It is generally easier
to call a routine written in the same language as the calling program, since
calling conventions and data types are the same. If a routine is to be called from
several languages, try to choose compatible data types. For example, a PL/I
routine that requires a CHAR (n) VARYING parameter is more difficult to call
from C than a routine that requires a CHAR (n) parameter, because C contains
no equivalent to the CHAR (n) VARYING data type.

If you plan to register your library EPF, make sure that the language and compiler version
you are using support registration. See Chapter 6.

You should also remember that C language subroutines handle parameters by
value, while FORTRAN 77 and PL/I handle them by reference. Subroutines
written in FORTRAN 77 and PL/I can treat parameters as both input and output
values in the same way that Prime-supplied routines do. C language subroutines
must receive pointers to output parameters. If you write library subroutines in C,
you should make programmers who use them aware of this difference.

If you are coding in PMA, see Appendix A, which gives general guidelines for
writing EPF code in PMA.

Compiling

If your subroutines are written in a high-level language, compile your source
using one of the Prime compilers. The compiler must generate V-mode or
I-mode object code. If your subroutines are written in PMA, assemble the
source with the PMA assembler. PMA code must contain the SEG or SEGR
pseudo-operations, as described in Appendix A.

As with program EPFs, do not use the -PBECB compiler option. For more
information, refer to Chapter 4.

Determining Library Class

When you build your library EPF using BIND, use the LIBMODE subcommand
to specify whether it is to be a program-class library or a process-class library.
You must specify a library class for all library EPFs, both dynamic library EPFs
and registered library EPFs. This section shows you how to determine which
class to use when building a library EPF.

Second Edition 5-7

Advanced Programmer’s Guide I: BIND and EPFs

58 Second Edition

Library Initialization

A library’s class determines when and how often the library is initialized.
Initialization of an EPF sets the initial values for various elements in the
linkage/data segments. When PRIMOS initializes a linkage/data segment, it
resets dynts to their unsnapped state and writes initial values to locations that
contain static data. If an EPF contains impure procedure code, PRIMOS also
copies the initial code values to the segments allocated for impure code.

Initialization may occur several times during the life of an EPF, depending on the
type of the EPF. For dynamic EPFs, PRIMOS initializes the following:

o A program EPF each time it is invoked

® A program-class library EPF the first time it is called by a given program ‘\
invocation

® A process-class library EPF the first time it is called by a given process

For registered EPFs, PRIMOS initializes the following:

e The shared linkage/data of the EPF at registration time.

¢ The per-user linkage/data of a registered EPF in the same way it
initializes a dynamic EPF. The per-user linkage/data of a registered -~
program EPF or a program-class registered library EPF is initialized once -
per program invocation. The per-user linkage/data of a process-class
registered library EPF is initialized once per process.

The discussion that follows applies both to dynamic EPFs and to the per-user
parts of registered EPFs.

When you create a library EPF you can choose to make it either a program-class

or process-class library. In general, process-class libraries are preferable because

they minimize initialization overhead. However, in certain circumstances you A\
must create a program-class library. This depends on two issues:

e Whether the routines in the library EPF call routines in program-class
libraries

¢ How the routines in the library EPF initialize and handle static data

Library-class Mixing

The following rules reflect the way PRIMOS initializes called libraries during
program execution.

o A program-ciass library routine can call routines in another program-class
library.

\

N

Yy)

Library EPFs

® A process-class library routine can call routines in another process-class
library.

® A program-class library routine can call routines in a process-class library.

® A process-class library routine cannot call routines in a program-class
library.

PRIMOS decides whether to initialize a called library when it snaps a link to the
library. If the library is a program-class library, PRIMOS initializes it if it has
not been previously called during the current program invocation. If the library
is a process-class library, PRIMOS initializes it if it has not been previously
called by the same process.

Because PRIMOS only makes this decision when it snaps a dynt, it cannot
initialize a called library more often than it snaps dynts to the called library.
Since dynts in the calling EPF remain snapped until the calling EPF is
reinitialized, PRIMOS cannot be sure of initializing a called library any more
often than it initializes the calling EPF. Therefore, process-class libraries, which
are initialized once per process, should not call program-class libraries, which
must be initialized once per program invocation. If PRIMOS detects a violation
of this rule during dynamic linking, it generates a LINKAGE_FAULTS error.

Therefore, any library routine that calls routines in program-class libraries must
itself reside in a program-class library.

Language-directed 1/O

Prime-supplied languages use program-class libraries to handle language I/O.
Therefore, routines that use language-directed I/O must be in program-class
libraries. Some language-directed I/O statements are shown in Table 5-1.

Table 5-1. Language-directed I/O Statements

Language Statements
C printf, getc, fopen
FORTRAN 77 READ, WRITE, OPEN, CLOSE
PL/ put, get, open, close

Static Data Usage

A routine that use static data may also have to be placed in a program-class
library. This depends on how the static data is used and how you intend the
routine to function. This section gives some guidelines that you can use to

Second Edition 5-9

Advanced Programmer’s Guide I: BIND and EPFs

determine whether static data usage requires that the routine be placed in a
program-class library.

In general, compilers create non-static variables by default. Non-static variables
are allocated and initialized at runtime in such a way that their lifespan is strictly
limited to specific portions of the invocation, such as single subroutine
invocation.

Static variables are allocated and initialized only as often as PRIMOS initializes
the EPF. Therefore, the lifespan of static data in an EPF library depends on the
library class. Static data values in a program-class library are maintained for a
single program invocation. Static data values in a process-class library survive
as long as the invoking process.

Static storage places data in fixed locations in the linkage/data area of an EPF.

The precise scope and lifespan of static variables varies from compiler to *\
compiler, but you typically use static storage to maintain the values of variables

across calls to a procedure. Static data include

e Variables declared as static or static external in PL/I and C

e Variables declared with a SAVE, DATA, or COMMON statement in
FORTRAN 77. (If the program is compiled with the —-SAVE option, all
variables are static.)

e PMA variables created using the COMM and EXT pseudo-operations or “a
the LINK pseudo-operation followed by instructions such as DATA, OCT,
DEC, BSS, BSZ, ECB, IP, and the like.

It is generally considered good programming practice to limit the use of static

data in order to keep the behavior of your procedures consistent from invocation

to invocation. If variable values are not maintained across calls, then you can be

sure that values left over from one invocation cannot affect a procedure’s

behavior on subsequent invocations. This makes your procedures more robust

and portable and allows you to program in a strictly modular way. ‘\

Note Even when you want to maintain variable values across calls, you can often avoid using
static storage by passing the values back to the calling program and having the calling
program maintain them.

Process-class Libraries: Inorder to minimize initialization overhead,
process-class libraries are generally preferable. However, when using
process-class libraries, you must be sure that static data values generated during
one program invocation do not adversely affect the library’s behavior during
subsequent program invocations.

You can use process-class libraries explicitly to maintain static data values from

program invocation to program invocation. Chapter 7 shows you how to make

use of this feature to share data among programs within a single user process.

Remember, however, that such use of static data may make your subroutines less ..\

5-10 Second Edition

N

)

Library EPFs

easily portable among applications. You may be able to use other mechanisms,
such as global variables, to maintain data values from program invocation to
program invocation without sacrificing portability.

Program-class Libraries: Program-class libraries generate more
initialization overhead, but insure that subroutine behavior does not vary from
one program invocation to the next. They are useful when you choose to
maintain static data values across calls during a single program invocation, but
do not want these values to affect subsequent program invocations.

The following PL/I example illustrates the importance of correctly choosing the
library class when library subroutines use static data. The sample routine uses
static storage to maintain data across calls. It keeps a running average of a
stream of numbers:

average: proc (number) returns(fixed bin(15));
dcl number fixed bin(15); /* The newest number */

dcl count fixed bin(lS) static init(0),/* # of numbers */
total fixed bin(31) static init(0); /* Total value */

count=count+1; /* Another number */
total=total+number; /* Total it up */

return(divide (total, count, 15));
/* Return quotient of average */
end; /* average: proc */

If this routine is placed in a process-class library, it can only keep the running
average of a single stream of numbers for each process. For example, suppose
that the program STATS calls this subroutine to calculate the average of a stream
of 15 numbers, resulting in a value of 27. If you subsequently reinvoke STATS
during the same terminal session, count is still equal to 15 and total equal to 27.
Any new number stream is treated as a continuation of the previous one. The
only way to avoid this behavior is to reinitialize your command environment
between invocations of STATS.

If the same subroutine is placed in a program-class library, then subsequent
invocations of STATS cause the values of count and total to be reinitialized.
Each invocation of STATS can then use the AVERAGE subroutine to calculate
the average of a different stream of numbers.

Note, however, that the utility of the routine is still quite limited by its use of
static data. It can still only calculate the average of a single stream of numbers
within a given program invocation since total and count maintain their values
across calls throughout the program invocation.

Second Edition 5-11

Advanced Programmer’s Guide I: BIND and EPFs

5-12 Second Edition

You can make the routine much more flexible by rewriting it to eliminate the
static data and pass the running values back to the calling program:

average: proc (number,count,total) returns(fixed bin(15));

dcl number fixed bin(15), /* The newest number. */
count fixed bin(15), /* # of numbers. */
total fixed bin(31); /* Total wvalue. */
count=count+l; /* Another number. */
total=total+number; /* Total it up. */

return(divide (total,count,15));
/* Return quotient of average.*/
end; /* average: proc */

In this case, the calling program is responsible for maintaining the running value
and the number count. There are other ways to handle this problem without
eliminating static storage and requiring the calling program to maintain variable
values across calls, but they can require careful management of the static data
area.

Storage Allocation Issues

Program-class and process-class library EPFs differ in how they allocate and
deallocate stack space.

50 Series architecture allows the dynamic allocation of stack space during a
procedure call. In addition, PRIMOS allows the dynamic allocation and
deallocation of memory via explicit requests by a running program.

Dynamic memory is allocated during program runtime as a result of either

e Compiler-generated requests for temporary storage, such as for the storing
of a temporary character string during the execution of a string
concatenation operation

e Program-directed requests for memory, such as via the ALLOCATE
statement in PL/I

Normally, memory dynamically allocated by a program is automatically
deallocated (freed) by PRIMOS when the program terminates. In addition, any
memory dynamically allocated by program-class library EPFs invoked by that
program is also deallocated.

However, memory dynamically allocated by a process-class library EPF is not
deallocated by PRIMOS when a program terminates. This is because the linkage
portion of that EPF, which may contain pointers to the dynamically allocated

ﬂ
ﬂ

ﬁ

)

3

3

Caution

Library EPFs

memory, is not deallocated. Therefore, PRIMOS must distinguish between a

program-class library EPF and a process-class library EPF when allocating
memory.

A program-class library EPF acquires dynamically allocated memory from the
program-class storage pool used by program EPFs. PRIMOS automatically
deallocates this memory when a program terminates.

A process-class library EPF acquires dynamically allocated memory from a
special memory pool, called process-class storage. To allocate memory from
this pool, you must issue the LIBRARY PROCESS_CLASS subcommand when
you use BIND to build the library. No memory from this pool is ever explicitly
deallocated by PRIMOS except during logout and command environment
initialization.

If you build a process-class library EPF without the LIBRARY
PROCESS_CLASS subcommand, then any language-driven allocation, either
explicitly via statements such as ALLOCATE in PL/I, or implicitly via
compiler-generated allocation for temporary storage, fails when the library EPF
executes. The failure is in the form of a LINKAGE_ERRORS condition raised.
The condition is raised because the process-class library EPF attempted to link to
a program-class library EPF in which the program-class allocator resides.

A pointer to storage that has been dynamically allocated as program-based storage should
not be passed to a process-class routine if that routine stores the pointer in linkage area or
in dynamically allocated memory. Similarly, the address of a program-class entrypoint
should not be passed to a process-class routine unless the routine stops using the address
when it returns to its caller.

In general, a pointer to object A should never be passed to routine B if the life-span of the
storage used by routine B to hold the pointer to object A may exceed the life-span of
object A itself. Otherwise, the termination of object A followed by the continued
execution of routine B may result in the reference by B to the (nonexistent) object A,
producing unpredictable (and invariably incorrect) results.

While this is a general programming principle, it applies specifically to the interactions
between program-class routines and process-class routines.

Determining Library Entrypoints

Each library EPF contains a list of its entrypoints. This entrypoint list names the
routines in the library that may be called from outside the library. You use BIND
to create the entrypoint list when you build your library.

By default, BIND puts the names of all routines in the library into the library’s
entrypoint list. You can use the ENTRYNAME subcommand to exclude some
routines from the library’s entrypoint list. However, a program cannot directly
call a subroutine unless the subroutine is included in the library’s entrypoint list.

Second Edition 5-13

Advanced Programmer'’s Guide I: BIND and EPFs

Note

5-14 Second Edition

Unlisted routines can be called by other routines in the same library. Another
routine in the same library can provide a calling program with the address of an
unlisted routine. In this way, some routines in a library can be made externally
available while others are reserved for internal use by other routines in the same

library.

Entryname Conventions

Prime reserves the following entrynames for Prime-supplied subroutines:

e All entrynames containing a $ sign (for example: GVGET, CLPIX,
ECL$CC, SLEEP$)

e All entrynames listed in Table 5-2

Do not use any of these entrynames unless you specifically plan to replace a
Prime supplied subroutine with one of your own.

The IX-mode C compiler automatically adds the G$ prefix to all external references
unless they are declared as having fort ran storage class (a Prime extension to the C
language). For example, a call to the print £ routine creates a reference to GSPRINTF.
This forces IX-mode programs to call the IX-mode versions of subroutines. If you create
your own IX-mode C library, you must prefix the entrynames with G$. For example, if
you call a routine in your library using the C statement

y=my sum(x) ;

the library entryname for the called routine must be GSMY_SUM.

J

J

b

b

N

Library EPFs
Table 5-2. Subroutine Entrynames Reserved by Prime
ACKRCT ENCRYP LIBTBL QPOST T1IB
ADD_QREC EPF_ERR LIST_SRL QUITHD T1IN
ADOCRD EPF RL LNGCMP QUOTE_ T10B
ADQREC ERASE LOCK ROBASE T10U
ADRESS ERROPN LOG_EVEN R3FALT TBLRED
AD_CMD ERRRTN LOG_RECO RDASC TIDEC
ALLOC ERRSET MCSDAT RDBIN TIHEX
APPEND EVAL_A MCSTOD RDNPAG TIMDAT
APROTO EXIT MOVB RDPRCN TIMREC
ATLIST EXTRAC MOVE RECYCL TIMSLT
ATMAIN FILERR MOVEB RELGRP TIOCT
ATTDEV FILHER MOVWDS REMANS TM3270
AVAIL FINDPG MSGCTL REMUSR TMDISP
BCKUPB FIND_U NETCHK REPOST TNOU
BSCMAN FIND_UID NETFIG RESTART_ TNOUA
C1IN FNDREC NETPRC RGSTRY TODEC
CALFC_ FINDWRD NETSET RIDBG TOHEX
CHFI FORCEW NEWS RIJMNIT TONL
CIRLOG FREE_DES NOTDST RJPROC TOOCT
CKINST FREE_ O R NPXPRC RMLOCK TRNRCV
CKNDNM FSCHOC NXTLIN RPTSPL TRTYPE
CLEARS GALLKS OAUSER RQUEST TRVERSIO
CLREAD GCHAR OERRTN RSTBL TSATRC
CLRLIN GETADR OPNDFL SAL_HP TSTAMP
CLR_FLDS GETENT OPNDOC SCANB UDTDRY
CLSDOC GETERR OPNQFL SCHAR UDTF07
CMD_POST GETNPG OWL2 SEARCH_C UNCAN_ME
CMD_PRE_ GETNYB P1IB SEARCH_H UNLOCK

Second Edition 5-15

Advanced Programmer’s Guide I: BIND and EPFs

5-16 Second Edition

Table 5-2. Subroutine Entrynames Reserved by Prime (continued)

CNIN
COMANL
CONTRL
CRAWL_
CREUFD
DATE_A
DCTEXS
DECR_HOP
DEFILE
DELAY
DELAY _
DELETE
DELETE_Q
DELOAS
DH3270
DIDNUM
DIRSER
DISPLA
DMIDAS
DMLCP
DNUMID
DOSSUB
DPTINI
DPTOFF
DRAIN_QU
EM3270

GETREG
GETSLT
GET_REPL
GFILKS
GINFO
GORDNC
GOREAD
GTDOCR
GTWORD
GUSLKS
HASH U
HASH_UID
ICMTB_
ICPL_
ICS2CT
ID
INCPTR
INITP1
INIT_NPX
INIT_O_S
INTCM_
IQNET
IQUSER
DPTOFF
JUSTRT
LCKGRP

P1IN

P10OB
P10U
P2UPCS
PACK_BIT
PACK_CHA
PACK_INT
PARS_ATT
PARTCL
PASSWD
PCREAT
PEXIT
PFIL2A
PFLMOE
PHDBG
PINIT
PINLNK
PK2LDV
PRIBLD
PRICON
PRVSB_
PTRAP
PUTBL
ISFEPF
PUT_HOP
QPARSE

SECBLD
SEGCON
SELANG
SETATT
SETNAM
SETREG
SET_SRL
SET_VERS
SFR_CFSC
SFR_HP
SHRLIB
SH_CMD
SLAVE
SLAVER
SOUR3
SPLCHK
SRWREC
STK_EX
STPNC
STRBL
STRTPH
STUFF
SUBMIT
PUTSLT
SWFIM_
SWINTQ

UNPACK_A
UPCASE
UPDATE_S
USERID
USRPRM
VMMSG
VMMSG2
VMMSG3
VREMID
WHATIT
WRASC
WRBIN
WRITLINE
WRTPG
XLACPT
XLASGN
XLCLR
XLCLRA
XLCONN
XLGOON
XLGVVC
XLUASN
XMTRCV
SWFBK_

J

)

)

Library EPFs

Usually you use the names by which routines were defined in the source code as
entrynames in the library’s entrypoint list. If you want to use different names,
you can have BIND change the names of routines, but this requires an extra step
in the build process. To keep matters simple, choose the names carefully at
coding time and stick with them.

Building a Library EPF With BIND

Once you have decided on the entrypoint list and class of your library, you can
build it with BIND. The following examples show you typical build sequences
for program-class and process-class dynamic library EPFs. Even if you are
planning to register your library, you should first build and test it as a dynamic
EPE. Once the library is functioning successfully as a dynamic EPF it is simple
to rebuild it as a registered EPF. Registered EPFs are described in Chapter 6.

For a program-class library EPF, the build sequence is

OK, BIND library-EPF-filename

[BIND Rev. T3.0-23.0 (c¢) 1990, Prime Computer, Inc.]

: LIBMODE -PROGRAM

Library is program class.

: LOAD module-1 Load the compiled code of your library.
: LOAD module-2

: ENTRYNAME name-1 [name-2 ...] Create entrypoint list.

: LIBRARY library-name Load any special libraries
required.

: LIBRARY Load the standard system library if needed.

: FILE

OK,

The important points to note are

e You may provide a filename for the library EPF either on the BIND
command line or with the FILE subcommand at the end of the build
sequence. If you fail to supply a filename, BIND gives the library EPF the
same name as the first module loaded.

e The LIBMODE -PROGRAM subcommand defines the EPF as a
program-class library.

Second Edition 5-17

Advanced Programmer’s Guide I: BIND and EPFs

5-18 Second Edition

e The compiled code of your subroutines can be in one file or in several

separately compiled modules. You may find it easier to maintain the
library if you code and compile the routines separately. When you load
several modules, you can either specify several LOAD subcommands, as in
the example, or name all the modules on the same subcommand line.

You can name all the entrypoints on the same ENTRYNAME subcommand
line, as in the example, or give a separate ENTRYNAME subcommand for
each entrypoint.

You may find it useful for debugging purposes to issue the MAP
subcommand before you file the EPF. If you want the locations of
common areas to appear on the map, issue the
RESOLVE_DEFERRED_COMMON subcommand before the MAP
subcommand.

For a process-class library EPF, the build sequence is

OK, BIND library-EPF-filename
[BIND Rev. T3.0-23.0 (c) 1990, Prime Computer, Inc.]
: LIBMODE -PROCESS

Library is process class.
: LOAD module-1
: LOAD module-2

: ENTRYNAME name-1 [name-2 ...]

: LIBRARY library-name

: LIBRARY PROCESS CLASS Load the process class special

library.

: LIBRARY
: FILE
OK,

The differences between the process-class and program-class build sequences are

e The LIBMODE —-PROCESS command dcclares the EPF to be a

process-class library.

e The subcommand LIBRARY PROCESS_CLASS loads a special binary

library used by process-class library EPFs. This library contains routines
that cause all dynamic allocation performed by your library routines to be
done in process-class memory rather than program-class memory. For
more information, see the section Storage Allocation Issues below.

N

N

J

J

)

Library EPFs

Automatically Generating Entrynames: You can have BIND
automatically generate a list of entrynames by issuing the ENTRYNAME -ALL
subcommand. Before loading the modules containing your.subroutines, issue
ENTRYNAME —-ALL. Afterloading the modules containing the subroutines
you want listed in the entrypoint list, issue ENTRYNAME —NONE. This tells
BIND not to add entrynames for any subroutines subsequently loaded.

The sequence of subcommands is

: ENTRYNAME -ALL
: LOAD module-1 These modules contain routines
: LOAD module-2 that you want listed as entrypoints.

: ENTRYNAME -NONE
: LOAD other-module-1 These modules contain routines

: LOAD other-module-2 that you don’t want listed as
entrypoints.
: LIBRARY ([special-library-1 ...} If needed

Always issue the ENTRYNAME -NONE subcommand before loading any
libraries with the LIBRARY subcommand. Otherwise, you are likely to produce
a library EPF that either will not execute correctly or that has entrypoint names
that conflict with Prime-supplied libraries. The ENTRYNAME subcommand is
further described in the Programmer’s Guide to BIND and EPFss.

Changing Entrynames: An entryname is normally the same as the name of
the subroutine in your compiled code. If you want a subroutine’s entryname to
be different from the name under which the subroutine was declared in the
source code, use the CHANGE_SYMBOL_NAME subcommand.

To change the name of an entryname, issue the CHANGE_SYMBOL_NAME
subcommand, then issue the ENTRYNAME subcommand. For example,
suppose you define a subroutine called FOO, using the FORTRAN 77 statement

SUBROUTINE FOO(X)

If you want to declare this subroutine as an entrypoint called BAR in your library
EPF, give the following subcommands to BIND:

: CHANGE SYMBOL NAME FOO BAR
: ENTRYNAME BAR

Second Edition 5-19

Advanced Programmer'’s Guide I: BIND and EPFs

If you have BIND generate the entryname list with the ENTRYNAME —-ALL
subcommand, give the CHANGE_SYMBOL_NAME subcommand after you
load the subroutine modules.

The CHANGE_SYMBOL_NAME subcommand is further described in the
Programmer’s Guide to BIND and EPFs.

Creating Binary Libraries With EDIT_BINARY

Installing Libraries

5-20 Second Edition

You can greatly increase the convenience of using your library EPF by creating a
binary library with dynts to the library EPF entrypoints. After successfully
building your library EPF using BIND, use EDIT_BINARY to generate a
corresponding binary library. You use this binary library when you build other
EPFs that call routines in the library EPE

Without such a binary library, when you build an EPF that calls routines in your
library EPF, you need to specify individual dynts for each called routine (using
the DYNT subcommand of BIND). With such a binary library, you can build an
EPF that calls routines in your library EPF exactly as you build EPFs that call
Prime-supplied subroutines. Simply load your binary library during the BIND
session, just as you load Prime-supplied binary libraries.

EDIT_BINARY is further described in Chapter 9.

In order to use a library EPF and its corresponding binary library, you must carry
out three operations:

¢ Install the binary library in an appropriate directory.

e Install the library EPF in an appropriate directory.

e Modify your ENTRY$ search rules.

These operations can be performed in any sequence.

Installing Binary Libraries
Where you install your binary library depends on who you want to have access
to it.

You can install your binary library in the top-level directory LIB. LIB is a
directory of binary libraries. It is accessible to all users.

J

3

Y

Note

Library EPFs

You can install your binary library in a directory accessible to a specific set of
users.

If you place your library in the LIB top-level directory, users can load it during a
BIND session using the subcommand

LIBRARY library name

If you place your library in another directory, users must load it using the full
pathname with either

LIBRARY library_pathname
or

LOAD library pathname

The only difference between the LIBRARY and LOAD subcommands in BIND is that
LIBRARY adds LIB> to library-name when you don’t specify a pathname for the
library. The command

LIBRARY library name
is equivalent to the command

LOAD LIB>library_name

The advantage of installing your binary library in the LIB top-level directory is
that users can build with it using the same subcommand format they use to build
with Prime-supplied libraries. Installing your binary library in another directory
is useful when you want to restrict use of the binary library to a specific group of
users.

Installing Library EPFs

PRIMOS reserves the top-level directory LIBRARIES* for library EPFs. You
can install your library EPF either in LIBRARIES*, or in some other directory
accessible to a specific group of users.

Wherever you install it, a library EPF is only accessible to the dynamic linking
mechanism if the library’s pathname appears in an ENTRY$ search list. Even if
you install a library EPF in the LIBRARIES* top-level directory, a user cannot
run programs that call the library unless the library’s pathname is included in the
user’s ENTRYS$ search rules.

Second Edition 5-21

Advanced Programmer’s Guide I: BIND and EPFs

Setting ENTRY$ Search Rules

The dynamic linking mechanism uses the ENTRY'$ search list to resolve
dynamic links during program execution. An ENTRY$ search list contains the
pathnames of libraries to be searched for routines. Any library EPF that you
construct must be listed in the ENTRY $ search list of all users that will run
programs that call routines in your library EPF. This section describes the steps
needed to include a library EPF in an ENTRY$ search list.

The dynamic linking mechanism can use either of the following search lists:

e The systemwide default ENTRY$ search list, SYSTEM>ENTRY$.SR

e A private ENTRYS$ search list maintained by each user

Private search lists usually include the system default search list along with
additional library pathnames. Therefore programs run by users with private
search lists can normally make use of both the system default and user-specific
libraries.

Modifying the System Default ENTRY$ Search List

You can make your library EPF accessible to users throughout the system by
adding the library’s pathname to SYSTEM>ENTRY$.SR. Typically, you request
that the System Administrator install your library EPF in the LIBRARIES*
directory, and add its pathname to the system default ENTRY$ search list.

Caution Typically, you do not have access to SYSTEM>ENTRY$.SR unless you are the System
Administrator. If you modify it, it is possible to accidentally render it unusable, such as
by inserting a duplicate search rule. If ENTRYS$ is corrupted, not only will users be
affected, but a subsequent cold start of the system may render the supervisor terminal
nearly ineffective. In such a situation, you will be unable to use ED or EMACS to fix the
file, since both editors themselves reference faulted IPs to call system subroutines via the
dynamic linking mechanism.

The solution to this problem is to use the non-shared editor, NSED, to fix the default
search list file. NSED runs under PRIMOS II, and therefore does not ever reference
faulted IPs. Rebooting the system would then load the corrected default search list file.

When a user logs in, PRIMOS supplies the user with the current system default
search lists. A change to the system default search lists only affects a user when
the user’s process is reinitialized. Users who are already logged in when the
System Administrator modifies a system default search list need to issue the
SET_SEARCH_RULES command (with the -DEFAULT option) or the
INITIALIZE_ COMMAND_ENVIRONMENT (ICE) command to update their
system default search lists.

5-22 Second Edition

J

3

9

Note

Library EPFs

Creating and Modifying Private Search Lists

Altematively, you can create or modify private ENTRY$ search lists for users
who run programs that call your library EPF. Usually such private search lists
include both the system default ENTRY$ search rules and the pathnames of
user-specific libraries. You include the system default ENTRY$ search rules by
including the ~SYSTEM search rule in the private search list.

For example, suppose you want to make your library EPF available only to a
restricted group of users who have access to the directory
MY_GROUP>LIBRARIES. If you install MY_LIBRARY.RUN in the directory
MY_GROUP>LIBRARIES, you can create the following ENTRY$ search list
for group members:

-SYSTEM
MY_GROUP>LIBRARIES>MYLIBRARY.RUN

Suppose you save this file as MY_GROUP>ENTRY$.SR. Each group member
who plans to run a program that accesses your library EPF must then issue the
command

SET_SEARCH_RULES MY_GROUP>ENTRY$.SR

This sets the user’s ENTRY$ search list.

When a user logs in or reinitializes the user process (by issuing the ICE
command), all search lists are automatically reset to system defaults. For this
reason, users who want to always use a private search list should add the
SET_SEARCH_RULES command to their LOGIN.CPL or LOGIN.COMI file.
This insures that the user is always accessing the proper search list.

If a user complains that a LINKAGE_FAULTS$ condition was signaled, indicating a
failure to link to an entrypoint in your library EPF, it may be that the user is not using an
ENTRYS$ search list that includes your library EPF. Ask the user to issue the
LIST_SEARCH_RULES command (abbreviated LSR) and be sure that the pathname of
your library EPF is listed.

If the user has the correct entrypoint search list, then use the
LIST_LIBRARY_ENTRYPOINTS command (abbreviated LLENT) to ensure that the
desired subroutine is, in fact, an entrypoint in your library EPF.

The SET_SEARCH_RULES, LIST_SEARCH_RULES, and LLENT commands
are described in the PRIMOS Commands Reference Guide; the search rules
facility is described in the Advanced Programmer’s Guide I1: File System.

Second Edition 5-23

)

Y

Registered EPFs

Registered EPFs provide an efficient means to implement shared
programs and libraries. How much a given program can benefit from
registration depends on how the program is coded. This chapter describes

Deciding whether a program is a good candidate for registration
Writing programs for registered EPFs

Building registered EPFs with BIND

Creating binary libraries that reference registered library EPFs
Registering EPFs (performed by the System Administrator)
Accessing registered EPFs

Getting information about registered EPFs

Should You Register an EPF?

You can register both program EPFs and library EPFs. Registering an
EPF offers a number of advantages both for system and individual user
performance:

Registered EPFs share linkage, reducing the system working set.

Dynamic links in shared linkage are pre-snapped, reducing execution
time.

Per-user data is generally initialized faster, reducing startup time.

Nearly all EPFs can take advantage of these features, but some EPFs will
benefit more than others. This section gives you some guidelines for
identifying EPFs that are likely to benefit most.

Second Edition 6-1

Advanced Programmer’s Guide I: BIND and EPFs

6-2

Second Edition

Shared Linkage

One of the major advantages of registered EPFs is that they can share
linkage. Shared linkage allows registered EPFs to use less system
resources and to startup and run faster.

* Because only one copy of the shared linkage needs to be maintained
on the system, a registered EPF being run by several users occupies
fewer system resources than a dynamic EPF version of the same EPE
Systemwide, the registered EPF version uses less memory and
requires less paging per user to file system disks.

e Dynts in shared linkage are snapped at registration time. Since these
dynts need not be snapped at runtime, the registered EPF runs
faster.

The more linkage an EPF has, the more it can benefit from registration.
Highly modular programs tend to have more linkage. Each routine in your
program or library that is not shortcalled has an Entry Control Block
(ECB). Registration places these ECBs into shared linkage. Calls to
subroutines generate IPs. Registration places many of these IPs in shared
linkage.

You can share linkage for internal calls to routines within the program
EPE. You can also share linkage for external calls to routines in registered
library EPFs and PRIMOS direct entries. You cannot share linkage for
external calls to dynamic library EPFs or static-mode libraries. Therefore,
if your program calls mostly PRIMOS direct entries, internal routines, and
external routines in other registered EPFs, then your program or library
can benefit from registration.

Other Factors

Even programs that do not generate a large amount of shareable linkage
may benefit from registration. PRIMOS creates and stores an initialized
copy of per-user data and linkage at registration time. When a user
invokes a registered EPE this copy can be quickly mapped to the user’s
address space so the EPF starts up faster. In a dynamic EPF, per-user
linkage/data segments must be expanded from templates each time a user
invokes the EPFE

Although nearly all programs can benefit in some way from registration,
keep in mind that a registered EPF continues to occupy system resources
until it is unregistered. A registered EPF remains mapped to shared
segments, and PRIMOS must store information about it even if no one
invokes it. Frequently used and widely used programs and routines are
therefore better candidates for registration than programs or routines

J

J

-

Registered EPFs

rarely used or run by only a few users. In general, linkage-intensive
programs tend to benefit the most from registration.

Registered EPFs perform fewer paging operations to the user’s file system
disk space, but may require more paging disk space than dynamic EPFs.
This should improve I/O performance, although the total number of page
faults may not decrease. It may be necessary to increase the size of the
paging disk to support large registered EPFs.

Figure 6-1 illustrates how registered EPFs have the ability to use both
shared and per-user linkage. In most cases, shared is preferred.

Dynamic Program EPF
» Single entrypoint
« Direct invocation
« Per-user linkage

Dynamic Library EPF
» Multiple entrypoints
« Indirect invocation
« Per-user linkage

Registered Program EPF
« Single entrypoint
« Direct invocation
» Shared linkage

Registered Library EPF
« Single entrypoint
« Direct invocation
» Shared linkage

(optional per-user (optional per-user
linkage) linkage)

Figure 6-1. Comparison of Properties Between Dynamic EPFs
and Registered EPFs

Creating Registered EPFs

Prime recommends that you build registered EPFs in the following stages:

Build, test, and debug a program as a dynamic EPE
Relink with BIND to create a registrable EPE.

Test the registrable version by running it unregistered.
Have the System Administrator register the EPE

Add the -PUBLIC rule to the appropriate search lists.

A o M

Test the registered version.

Second Edition 6-3

Advanced Programmer’s Guide I: BIND and EPFs

These stages apply to the creation of both registered program EPFs and
registered library EPFs. By following this sequence, you can quickly
isolate problems that occur at the coding, building, or registration stages.

Compiler Support

For a program EPF or a library EPF to benefit from registration, it must
have been compiled with a compiler that supports Z frame organization.
Traditionally, Prime compilers divided code into three frames: the
procedure frame, the data frame, and the stack frame. The data frame
contained data, common areas, and linkage information. More recent
Prime compilers support a fourth frame, the Z frame. The Z frame is a
separate frame that holds the linkage information that was previously
stored in the data frame.

As of Translator Family Revision T3.0, all Prime-supplied compilers,
except FTN, support Z frame organization. The Z frame is automatically
generated during all program compiles. These compilers generate code
that can take advantage of all the benefits of EPF registration. Z frame
organization should have no effect on the linking, loading, or execution of
programs that are not registered. Therefore, recompilation of programs is
never required, and is only recommended if you intend to use that
program to build a registered EPE

Table 6-1 shows the first release of each compiler that fully supports
registered EPFs.

Table 6-1. Compiler Support for Registered EPFs

Compiler First Release Supporting Registered EPFs
PMA PRIMOS Rev. 21.0
C T1.2
CBL T2.0
COBOLSS Compiler Rev. 1.0
FIN Not supported
F77 PRIMOS Rev 20.2
Pascal T3.0
PLIG T3.0
PL/I T3.0
VRPG PRIMOS Rev. 20.2

6-4 Second Edition

J

J

) J

Y

Note

Registered EPFs

Code compiled with the FTN compiler or with older versions of the other
compilers can be used to build a registered EPF, but performance benefits
are smaller because linkage cannot be shared. For full registered EPF
support, you should convert FTN code to F77 and recompile. Code
compiled with earlier versions of other compilers should be recompiled
with more recent compiler versions, as indicated in Table 6-1.

Existing PMA programs require some minor source code changes to create
registrable EPFs with shared linkage. Appendix A shows you how to
create registrable EPFs with PMA.

Coding Guidelines

For programs written in high-level languages, no programming restrictions
apply. The only guideline is to follow good programming practices. In
particular, you need not worry that a highly modular program will start up
or run slowly because it uses a lot of linkage. Because shared dynts are
snapped and linkage segments created when you register the EPE
registered EPFs start quickly even when they contain a great deal of
linkage.

Remember that shared dynts are only used for calls to PRIMOS direct
entries and registered library EPFs. PRIMOS snaps shared dynts to these
libraries when you register the EPF. Your program EPF may also contain
per-user (non-shared) dynts. All calls to routines in dynamic library EPFs
and shared static-mode libraries are per-user dynts. You can also specify
per-user dynts to routines in registered library EPFs. Per-user dynts are
snapped during program execution.

If your EPF calls routines in user-written or other non-Prime supplied
libraries, linkage to those routines can only be shared if those libraries are
registered. To get maximum benefit from registration of a program EPF,
you should also register the library EPFs that contain frequently called
routines.

If you maintain shared static-mode programs or shared static-mode libraries on
your system, you should consider converting them to registered EPFs. Appendix C
provides guidelines for converting static-mode code to registered EPFs.

To maximize performance of registered EPFs, you should keep in mind
that when you invoke a registered EPEF, PRIMOS initializes all of the
registered library EPFs linked to your registered EPF by shared dynts.
Therefore, a program that calls routines in many registered EPF libraries

Second Edition 6-5

Advanced Programmer’s Guide I: BIND and EPFs

may be less efficient than one that calls routines in fewer registered EPF
libraries. To improve initialization efficiency of registered EPFs

* Consolidate frequently called routines into fewer registered library
EPFs.

* Reduce the size of these registered library EPFs by removing rarely
called, personal, and obsolete routines. Registered EPFs should
contain code that is frequently called by multiple users, not rarely
used routines or programs used by only a single user.

e Establish per-user (rather than shared) dynts to rarely called routines
in registered EPF libraries. (You establish establish the dynt type
when you use BIND to build the EPF.)

* Avoid nesting registered library EPFs with shared dynts. An
example of this is a registered EPF that calls a routine in a registered
library EPF and that routine calls a routine in another registered
library EPE In this case, if all of these links are shared dynts,
PRIMOS initializes all three registered EPFs (the program EPF and
the two library EPFs) even if these routines are never called during
program execution. (Nesting shared dynts also complicates EPF
registration, as described later in this chapter.)

PRIMOS direct entries do not require initialization. You should specify
PRIMOS direct entries as shared dynts, regardless of how frequently they
are called.

Compiler Options

EPFs must be compiled in V-mode or I-mode.

The -PBECB compiler option should be avoided, in most cases, because
this option substantially reduces the amount of shared code. Chapter 4
provides further details on the -PBECB option.

Building With BIND

6-6

Second Edition

It is recommended that you initially build and test all programs as
dynamic EPFs, then rebuild the tested version as a registered EPE. Once
you have built and tested an EPF as a dynamic EPE it is not difficult to
rebuild it with BIND to create a registered EPE

BIND provides several subcommands for building a registered EPE.

'))

))

)

)

Registered EPFs

Using the -REGISTER Option

The only requirement for building a registered EPF is to add the
-REGISTER subcommand option to the first subcommand of the build
sequence:

To build a registered program EPF, use the subcommand
PROGMODE -REGISTER

To build a registered library EPF, use the subcommand

- PROGRAM

LIBMODE [- PROCESS

] - REGISTER

When you specify -REGISTER to create a registered library EPE you
must also specify either -PROGRAM or -PROCESS for the per-user
linkage/data of the registered library EPF. Chapter 5 describes how to
determine whether a library EPF should be program-class or process-class.

Setting the Dynt Type

When using BIND to build an EPF, you specify whether the dynts are
shared or per-user (non-shared).

* Dynts to dynamic library EPFs and shared static-mode libraries must
be per-user.

¢ Dynts to PRIMOS direct entries can be either shared or per-user.
Normally, you want them to be shared in order to get the full benefits
of registration. Shared dynts are preferable for all references to
PRIMOS direct entries, because PRIMOS direct entries do not
require initialization.

e Dynts to registered library EPFs can be either shared or per-user. A
shared dynt saves dynt-snapping time during execution, but requires
PRIMOS to initialize the registered library EPF at the beginning of
program execution. PRIMOS initializes the registered library EPF
even if the dynt to that library is never executed. Therefore, it is
advantageous to establish this dynt as a shared dynt if you expect the
program to use the dynt during normal execution. If, however, the
dynt is almost never used (for example, a call to an error handler), it
may be advantageous to establish the dynt as a per-user dynt.

Second Edition 6-7

Advanced Programmer’s Guide I: BIND and EPFs

6-8

Second Edition

You set the dynt type by using the DEFAULT _DYNT_TYPE subcommand
and the DYNT subcommand.

In most cases, you should set the default dynt type to -SHARED when
using BIND to build a registered EPF. You set the default dynt type with
the subcommand

DEFAULT_DYNT_TYPE -SHARED

Give this subcommand before loading any binary libraries. This assures
that BIND places all dynts optimally in your registered EPF.

You can respecify the DEFAULT_DYNT_TYPE several times during a
BIND session.

You can use the DYNT subcommand to declare the dynt type of individual
dynts. If you do not specify a dynt type with the DYNT subcommand,
BIND first defaults to the most recent setting of
DEFAULT_DYNT_TYPE; if you have not specified a default dynt type
during that BIND session, BIND defaults to per-user.

Table 6-2 shows the dynt types that result from all possible combinations
of DEFAULT _DYNT _TYPE and DYNT subcommand values:

Table 6-2. Dynt Types Established by BIND

DEFAULT _DYNT_TYPE
DEFAULT_DYNT_TYPE

DYNT ~SHARED -PER_USER Not Issued
-SHARED Shared Shared Shared

-PER_USER Per-user Per-user Per-user
-DEFAULT or no Shared Per-user Per-user

option specified

Building With the DYNT Subcommand: You can place dynts to
user-supplied routines in a registered EPF runfile by using the DYNT
subcommand of BIND. When you do this, be sure that BIND puts the
dynts in the appropriate place:

* Dynts to routines in registered library EPFs and PRIMOS direct
entries should be shared.

¢ All other dynts should be per-user.

The DYNT subcommand defaults to -DEFAULT, so that BIND places the
dynt according to the most recent setting of the DEFAULT DYNT_TYPE

“N

N\

)

3

Registered EPFs

subcommand. If you have not specified a default dynt type during the
BIND session, the DYNT subcommand without options creates a per-user
dynt.

The following example shows how to use the DYNT -SHARED
subcommand to create shared dynts to three subroutines in a
user-supplied registered library EPF:

OK, BIND

{BIND Rev. T3.0-23.0 (c) 1990, Prime Computer, Inc.]
: PROGMODE -REGISTER

EPF is registrable program type.

: LO PROG_A

. LI

: DYNT -SHARED FOO, MOO, BAR

BIND COMPLETE

You can do the same thing by setting the default dynt type to shared:

OK, BIND

[BIND Rev. T3.0-23.0 (c) 1990, Prime Computer, Inc.]
: PROGMODE -REGISTER

EPF is registrable program type.

: LO PROG A

: LI

: DEFAULT DYNT TYPE -SHARED

: DYNT FOO, MOO, BAR

BIND COMPLETE

If you have a user-supplied library EPF that you link to using the DYNT
subcommand of BIND, you may want to consider creating a binary library
containing dynts to the entrypoints. You can then link to multiple routines
by loading a single binary library instead of creating individual dynts to
each routine. EDIT BINARY greatly simplifies the process of creating
binary libraries. You establish dynt types when using EDIT_BINARY to
build a binary library. The next section, Dynt Types and Binary Libraries,
gives guidelines for building binary libraries.

Dynt Types and Binary Libraries

Each dynt in a binary library can be of dynt type SHARED, PER_USER,
or DEFAULT. BIND cannot change a SHARED or PER_USER dynt type
specified in a binary library. BIND can change a DEFAULT dynt type
specified in a binary library. Dynt type DEFAULT means that BIND
must set the dynt type to either PER_USER or SHARED when you
submit the binary library to BIND. Setting the dynt type during a BIND
session is described in the previous section.

Second Edition 6-9

Advanced Programmer’s Guide I: BIND and EPFs

6-10 Second Edition

Binary Libraries Supplied by Prime: In binary libraries supplied by
Prime, dynts to PRIMOS direct entries are marked as SHARED, and
dynts to routines in registered library EPFs are marked as DEFAULT.
Dynts to other libraries are marked as PER_USER. You specify the dynt
type for the dynts marked DEFAULT when you load this binary library
during a BIND session. BIND sets DEFAULT dynts to the dynt type
specified by the BIND DEFAULT DYNT_TYPE command. For example,
if you set the BIND default dynt type to SHARED before loading one of
these binary libraries, BIND places all dynts marked SHARED or
DEFAULT in shared linkage and place dynts marked PER_USER in
per-user linkage.

User-created Binary Libraries: When you use EDIT _BINARY to
create a binary library, you should mark dynts to PRIMOS direct entries
as SHARED and dynts to routines in registered library EPFs as
DEFAULT. Mark dynts to routines in other libraries as PER_USER.
This give the user the flexibility to assign either dynt type to dynts for
PRIMOS direct entries and routines in registered library EPFs. In most
cases, you would assign dynt type SHARED to these dynts during the
BIND session.

All dynts in pre-Rev. 23.0 binary libraries are considered per-user dynts.
Even if dynts in these binary libraries reference routines now in registered
library EPFs, BIND still puts these dynts in per-user linkage. If you build
with your own pre-Rev. 23.0 binary libraries, you may want to rebuild these
binary libraries in order to generate more efficient registered EPFs. The
section, Setting Dynt Types in Binary Libraries, shows you how.

Loading a Binary Library: You can place dynts in a registered EPF by
loading a binary library. You load a binary library using either the LOAD
or LIBRARY subcommand of BIND. The following example shows a
build sequence with a user-created binary library. It creates a registered
EPF named TEST, using a binary library named TEST_LIB.

OK, BIND

{BIND Rev. T3.0-23.0 (c) 1990, Prime Computer, Inc.]
: PROGMODE -REGISTER

EPF is registrable program type.
: LO TEST

: DEFAULT DYNT TYPE -SHARED

: LI MYLIBS>TEST_LIB

: LI

BIND COMPLETE

. FILE

OK,

J

)

3

)

Note

Registered EPFs

Because the appropriate dynt types (DEFAULT or PER_USER) were set
when you used EDIT_BINARY to build the binary library, you can just set
the DEFAULT _DYNT_TYPE during the BIND session to resolve the
dynts of dynt type DEFAULT.

This BIND build sequence uses a pathname with the LIBRARY
subcommand, because the user-supplied library is not installed in the LIB
top-level directory. If the library was in LIB, you would use the LOAD
subcommand rather than the LIBRARY subcommand.

The next section shows you how to use EDIT_BINARY to build binary
libraries that conform to Prime standards.

Setting Dynt Types in Binary Libraries
To build binary libraries according to Prime standards, you should

¢ Mark dynts to registered library EPFs and PRIMOS direct entries as
-DEFAULT.

¢ Mark dynts to routines not in registered library EPFs or PRIMOS
direct entries as -PER_USER.

Do not mark dynts to routines in dynamic library EPFs as DEFAULT. If these dynts
are marked as default, then the standard BIND build sequence given above puts
them in shared linkage. An EPF with such dynts in shared linkage cannot be
registered successfully.

Using the Prime standard for binary libraries provides maximum flexibility
and simplifies program maintenance. Other options are available,
although not recommended: When using EDIT_BINARY to build a
binary library, you can mark dynts to PRIMOS entrypoints and registered
library EPFs as PER_USER, but registered EPFs built with such a binary
library do not gain the benefits of dynt sharing. You can also use
EDIT_BINARY to mark these dynts as SHARED. In this case, you need
not set the DEFAULT _DYNT_TYPE subcommand to SHARED when
you use BIND to build with such a binary library. However, you cannot
use this binary library to create per-user dynts.

Using the EDIT_BINARY DYNT Subcommand: You can create dynts
of all types in a binary library using the DYNT and
DEFAULT_DYNT_TYPE subcommands of EDIT_BINARY. These
EDIT_BINARY subcommands are very similar to the corresponding
BIND subcommands. The principal difference is that during an
EDIT_BINARY session you can establish a dynt of dynt type DEFAULT,

A dynt type of DEFAULT is resolved when you submit the binary library
to a BIND session. Table 6-3 shows the possible combinations of

Second Edition 6-11

Advanced Programmer’s Guide I: BIND and EPFs

6-12 Second Edition

DEFAULT_DYNT_TYPE and DYNT subcommands during an
EDIT_BINARY session:

Table 6-3. Dynt Types Set by the DYNT Subcommand of EDIT_BINARY

DEFAULT_DYNT_TYPE

DYNT -SHARED -PER_USER -DEFAULT DEFAULT_DYNT TYPE
not issued

-SHARED Shared Shared Shared Shared

-PER_USER Per-user Per-user Per-user Per-user

-DEFAULT Shared Per-user Default, Per-user

or option not determined

specified at BIND time

Chapter 9 contains a complete reference to the EDIT_BINARY
subcommands.

Using the EDIT_BINARY READ Subcommand: If you create dynts
using the READ subcommand with no options, EDIT_BINARY
automatically sets the dynt types according to the Prime standard:

* When reading a registrable library EPF, dynts are marked as
DEFAULT.

¢ When reading a dynamic library EPE dynts are marked as
PER_USER.

You can use the READ subcommand’s -PER_USER, -SHARED, and
-DEFAULT options to override this automatic dynt type setting. (Note
that -DEFAULT is not the same as supplying no options. -DEFAULT
creates default dynts. With no options the dynt type depends on the type
of library being read.)

Table 6-4 shows the possible dynt types created by the READ
subcommand during an EDIT_BINARY session.

Table 6-4. Dynt Types Set by the READ Subcommand of EDIT_BINARY

Options Values

-SHARED Shared

-PER_USER Per-user

-DEFAULT Default, determined at BIND time

No option specified Set by library type:
Registered = Default
Dynamic = Per-user

J

~

J

Registered EPFs

The EDIT_BINARY DEFAULT_DYNT_TYPE subcommand is only used
with the DYNT subcommand; it does not affect dynt types established

using READ. Chapter 9 contains a complete reference to the
EDIT_BINARY subcommands.

Two EDIT_BINARY Examples: The following example creates a binary
library containing default dynts by reading a user-created registered
library EPF:

OK, EDIT BINARY

[EDIT BINARY Rev. T3.0-23.0 (c) Prime Computer,Inc. 1990]

: RFL

: READ MY LIB.RUN

r Library creation date: 90-12-03.14:06:24 .Mon

Library type: registered program
Number of entries: 4

End processing MY LIB.RUN.
SFL

: FILE MY BIN

OK,

You can check the dynt types created with the LIST_CONTENTS
subcommand.

OK, EDIT BINARY

{EDIT BINARY Rev. T3.0-23.0 (c) Prime Computer,Inc. 1990]
: OPEN MY BIN

: LIST_CONTENTS -DYNTS

Contents of file "MY_BIN":

INITRT (DF) BAR (DF) MOO (DF)

FOO (DF)

End of list.

: QUIT

f‘ oK,

Here the display shows the dynt types as default (DF).

The next example shows how to use the READ subcommand to specify a
dynt type that differs from the standard type for that library. For example,
to create per-user dynts when reading a registered library EPF, you would
give the -PER_USER option with the READ command.

OK, EDIT BINARY
(EDIT_BINARY Rev. T3.0-23.0 (c) Prime Computer,Inc. 1990]

: RFL
: READ MY LIB -PER USER
Library creation date: 90-12-03.14:06:24.Mon
Library type: registered program
"‘ Number of entries: 4

Second Edition 6-13

\

Advanced Programmer’s Guide I: BIND and EPFs

6-14

Second Edition

End processing MY LIB.

: SFL

: FILE MY BIN

OK, EDIT BINARY

{EDIT BINARY Rev. T3.0-23.0 (c) Prime Computer,Inc. 1990]
: OPEN MY BIN

: LIST CONTENTS -DYNTS

Contents of file "MY BIN":

INITRT (PU) BAR (PU) MOO (PU)
FOO (PU)

End of list.

: QUIT

oK,

Rebuilding Old Binary Libraries

Prime recommends that you use EDIT_BINARY to rebuild your old
binary libraries, marking all dynts to routines not in registered library
EPFs as -PER_USER. If you also use BIND to rebuild your dynamic
library EPFs as registered library EPFs, you can mark dynts to routines in
these libraries as -DEFAULT when you rebuild the binary libraries.

Supplying Initialization Routines

BIND provides the INIT_ENTRY subcommand, which allows you to
specify a routine in a registered EPF that PRIMOS will automatically
execute when you register the EPF. INIT_ENTRY is only meaningful if
building a registered EPF.

Typically, you establish such a routine to initialize data areas at
registration time. In a dynamic EPE, PRIMOS recreates the data image in
memory from the dynamic EPF file each time a user invokes the program.
It uses information in the EPF file to initialize the data image. In a
registered EPF, PRIMOS does not access the EPF file when a user invokes
the program; instead, PRIMOS copies the data image from shared
memory into the user’s memory space. Therefore, it may be necessary to
initialize data areas at registration time, when these data areas are stored
in shared memory.

The INIT_ENTRY subcommand allows you to include a data initialization
routine when you build a registered EPE. When the System Administrator
registers the EPF, PRIMOS executes the initialization routine, then saves
the data image with the appropriate initialization. A routine specified by
INIT_ENTRY can accept arguments supplied at registration time, so you
can use such a routine to carry out installation-specific initialization.

J

J

D)

)

Note

Registered EPFs

To specify a registration-time initialization routine, use the subcommand
INIT_ENTRY entryname

during the BIND session. entryname must specify an existing routine (with
an Entry Control Block (ECB)). If it does not, or if the EPF you are
building is not a registered EPF, BIND displays an error message.

For example, suppose you are building a registered library EPF called
LIB_B that includes an initialization routine called INIT_DB. You can
have PRIMOS execute INIT DB when LIB_B is registered by giving the
INIT_ENTRY subcommand during the BIND build session:

OK, BIND

[BIND Rev. T3.0-23.0 (c) Prime Computer,Inc. 1990]
: LIBMODE -PROCESS -REGISTER

Library is registrable process class.

: ENTRYNAME -ALL

All successive entrypoints will be added to the
entrypoint table

: LO LIB B

: LI

BIND COMPLETE

: INIT ENTRY INIT DB

Init Program ECB is INIT DB at -0004/000122

: FILE

OK,

The System Administrator can pass parameters to the initialization routine
at registration time by using the -INIT option of the REGISTER_EPF
command. See the section Registering an EPF, below, for details.

When you create an initialization routine in a registered EPF, remember that your
program may have dependencies: a set of library EPFs that must be registered in
order to register your EPF. These library EPFs can also contain initialization
routines. In fact, you can have more than one of these library EPF routines
perform initialization. If you do this, request that the System Administrator use
the -INIT DEPENDENCY _LIST option of the REGISTER _EPF command to
specify the order in which initialization routines should be executed. For more
details on dependency lists and REGISTER_EPF options, see the section
Registering EPFs, below.

Creating Shared Common Areas

Registered EPFs give you more flexibility than dynamic EPFs in creating
common areas. Dynamic EPFs can share read-only common areas.
Registered EPFs can share both read/write and read-only common areas.

Second Edition 6-15

Advanced Programmer’s Guide I: BIND and EPFs

Testing an EPF

6-16 Second Edition

The ability to create shared read/write common areas makes it possible to
use registered EPFs to share data among both programs and processes.

Using the -SHARE option of the ALLOCATE subcommand of BIND,
you can specify that a common area be placed in the shared portion of a
registered EPE You can use the -SHARE option to share both read/write
and read-only common areas.

With dynamic EPFs, only read-only data areas can be shared, and the
sharing is done implicitly by BIND without programmer intervention.

For a detailed description of this procedure, see Chapter 7, Shared Data.

You should test an EPF prior to registering it. To test a complex EPE the
following steps are recommended:

1. Use BIND to build the EPF as a dynamic EPE
Test the dynamic EPE

Use BIND to rebuild the EPF as a registrable EPE.
Test the registrable EPE

Register the registrable EPF.

Test the registered EPE

SR S

When testing an EPF, you should be aware of how the different versions of
an EPF use shared segments. See Table 6-5.

Table 6-5. Memory Assignment for EPF Versions

EPF Version Per-user Segments Shared Segments

Procedure code and liter-
als

Dynamic Data and linkage

Registrable Data, linkage, procedure code
and literals

Procedure code, literals,
and linkage

Registered Data

Executing a registrable EPF requires more resources than running the
same program as either a dynamic EPF or a registered EPE In general,
registrable EPFs should only be used for testing purposes.

ﬂ
“N\

J

J

r
~

h)

)

Registering EPFs

Registered EPFs

Only a System Administrator can register an EPF. An EPF is considered
registered when the System Administrator uses the REGISTER_EPF
command to perform the registration process. PRIMOS may suspend the
registration of an EPF until the successful registration of other related
EPFs. A suspended EPF cannot be executed as a registered EPF;
however, the dynamic EPF or registrable EPF version of the EPF may be
executed.

Although only a System Administrator can register an EPFE as a
programmer you should understand the registration process so you can
provide EPFs that can be registered successfully. You may also need to
provide information and support to the person who registers your
programs. You may want to provide a command file or CPL program that
contains the necessary registration commands to your System
Administrator. This section gives you the basic information you need.

The System Administrator can register an EPF using either the
REGISTER_EPF command or the EPF$REG subroutine. Registration is
usually performed as part of the cold-start procedure, but the System
Administrator can register an EPF at any time. The REGISTER_EPF
command is described in the Operator’s Guide to System Commands. The
EPF$REG subroutine is described in the Subroutines Reference II: File
System.

Dependency Lists

The basic rule of EPF registration is that shared dynts in a registered EPF
may only link to

* Routines in other registered EPFs
¢ PRIMOS direct entries

The reason for this restriction is straightforward: in order to share a dynt,
PRIMOS must reference the routine in a fixed location with a virtual
address that is the same for all users. In other words, the called routine
must also reside in shared memory. PRIMOS direct entries and routines
in registered library EPFs meet this condition. Routines in dynamic
library EPFs do not.

Second Edition 6-17

Advanced Programmer’s Guide I: BIND and EPFs

Note

6-18 Second Edition

A registered EPF can, of course, call routines in dynamic library EPFs. Links to
routines in dynamic library EPFs are per-user dynts, not shared dynts. A registered
EPF can also call routines in other registered EPFs using per-user dynts. Libraries
linked to your registered EPF by per-user dynts are not registration dependencies.

Direct and Indirect Dependencies: Successful registration of an EPF
with shared dynts to routines in other EPFs depends on registration of the
called EPFs. Registered EPFs called by shared dynts in your registered
EPF are said to be dependencies of your registered EPF. Such
dependencies may be both direct and indirect:

* A direct dependency is a registered EPF called by a shared dynt in
your registered EPE.

* An indirect dependency is a registered EPF not directly called by
your EPF, but called by a dependency of your EPE

For example, suppose the registered EPF PROG_A uses shared dynts to
call routines in the libraries LIB_B and LIB_C and that one of the called
routines in LIB_C uses a shared dynt to call a routine in LIB_D which in
turn calls a routine in LIB_E. In this case, LIB_B and LIB_C are direct
dependencies for PROG_A. LIB_D and LIB_E are indirect dependencies.

In order to register an EPF successfully, all direct and indirect
dependencies must also be registered. When you build a registered EPF
with shared dynts to other registered EPFs, you must be aware of all direct
and indirect dependencies. If any of these dependencies are not already
registered on your system, they must also be registered in order to register
your EPF successfully.

Usually, registered library EPFs supplied by Prime are registered at
system cold start. You can use the LIST REGISTERED_EPF command
to determine which libraries are actually registered on your system. If
your EPF has any dependencies that are not registered, you need to supply
this information to your System Administrator so that all these required
libraries can also be registered.

Registered EPF States

The registration process is designed so that you can register an EPF and
its dependencies in any order. PRIMOS allows you to register an EPF
even if all of its dependencies have not been registered first. Such a
registered EPF is placed in a suspended state and cannot be executed until
all dependencies have been resolved. (If this were not the case, you would
need to register the EPFs in order, beginning with indirect dependencies,
and you would be unable to register EPFs with circular dependencies.)

J

)

3

Registered EPFs

During registration, each EPF passes through two phases, each phase
having two states:

1. Linkage phase
o Linkage uninitialized
o Linkage initialized
2. Invocation phase
o Invocation suspended

o Invocation ready

Linkage: In the first phase of the registration process, PRIMOS locates
and resolves (snaps) all of the registered EPF’s shared dynamic links.

A registered EPF is uninitialized when any shared dynamic links remain
unsnapped.

A registered EPF is initialized when all shared dynamic links have been
snapped.

One cause of uninitialized linkage is a shared dynt that references a
routine in a dynamic library EPF or shared static-mode library. Only
per-user (non-shared) dynts can access routines in these libraries. To
correct this problem, you must either use BIND to rebuild your program
EPF, specifying the per-user dynt type for these references, or place the
referenced routines in a registered EPE.

As PRIMOS resolves shared dynamic links, it adds the names of the
library EPFs referenced by these dynamic links to a list of dependencies.
After attempting to resolve all shared dynamic links, PRIMOS proceeds to
the invocation phase and checks the contents of this dependencies list.

Invocation: In the second phase of the registration process, PRIMOS
determines if all of the dependencies of the registered EPF have been
registered.

A registered EPF is suspended when it is registered, but the EPF cannot
be executed. A registered EPF is suspended under any of the following
conditions:
¢ The registered EPF was not successfully initialized.
* An EPF that is a direct or indirect dependency cannot be located.
¢ An EPF that is a direct or indirect dependency has not been
initialized.
* An EPF that is a direct or indirect dependency is suspended because
one of its dependencies cannot be located or has not been initialized.

Second Edition 6-19

Advanced Programmer’s Guide I: BIND and EPFs

Note

6-20 Second Edition

If a registered EPF was not successfully initialized, its status is
uninitialized and suspended. If a registered EPF was successfully
initialized, but has some problem with its dependencies, its status is
initialized but suspended.

A registered EPF is ready when all the shared dynamic links are resolved
and all direct and indirect dependencies are ready as well.

Cross-checking: PRIMOS maintains a list of all suspended EPFs,
Whenever a new EPF is registered, PRIMOS automatically cross-checks
this list of suspended EPFs.

* When you begin registering an EPF, PRIMOS checks all of its
suspended EPFs to see if your EPF can be used to resolve any
previously unresolved dynamic links.

* When an EPF is updated from suspended to ready status, PRIMOS
checks to see if it can update the status of any EPFs that call the
newly updated EPE

Because PRIMOS constantly updates the status of all affected EPFs, you
can register an EPF and its dependencies in any order. When you register
an EPF before registering all of its dependencies, the EPF is marked as
suspended. Once you have registered all of the dependencies, the EPF’s
state is updated to ready.

Multiple EPF Registrations

The System Administrator can register more than one EPF with the same
name. This permits you to supply a new version of a registered EPF

without requiring that the System Administrator unregister the old version.

This makes it possible to update a registered EPF without corrupting
some user’s executing environment.

For simplicity, it is recommended that, whenever possible, the System
Administrator register all registered EPF at the same time during coldstart, and
that you avoid re-registering or unregistering EPFs while there are active users on
the system.

As each EPF is registered, it is given a registration number. The first
version of each EPF has registration number 1. Subsequent versions have
higher numbers. The LIST REGISTERED_EPF command displays the
registration number of each registered EPE.

The following rules govern the use of multiple registered EPFs:

» Executing a program EPF automatically executes the
highest-numbered version of that program EPE

J

Y)

Registered EPFs

e An executing program EPF continues execution, unaffected by the
registering of a new version of that EPF or its dependencies.

» A registered EPF accesses the dependencies that were the
highest-numbered versions at the time that the EPF was registered.
You must, therefore, re-register a program EPF to access a new
version of a library EPE

Unregistering EPFs

The System Administrator can use the UNREGISTER_EPF command or
the EPF$UREG subroutine to remove a registered EPF from the
registered EPF database. If an unregistered EPF is on the dependency list
of some other registered EPF, then the invocation status of the other EPF
is changed to suspended. For example, if EPF_A depends on EPF_B, then
unregistering EPF_B causes EPF_A's invocation status to be changed to
suspended.

By default, the UNREGISTER_EPF command only unregisters EPFs that
are not currently in use. However, the System Administrator can specify
the -FORCE option to unregister an EPF that is currently in use by some
user or that is a dependency of an EPF that is currently in use. If this
happens, the user’s executing environment is corrupted, and the executing
program will probably fail.

Setting Paging Disk Space

After registering an EPF, the System Administrator may need to change
the size of the system’s paging disk. PRIMOS copies the per-user linkage
and data of a registered EPF from DTARI1 shared memory segments into
each user’s DTAR3 memory segments when the user invokes the registered
EPE This operation uses the system paging disk. The actual paging disk _
requirements depend both on the size of the registered EPF and the
anticipated number of concurrent users of that EPE

To calculate the paging disk requirements for a registered EPFE, you need
the map output from BIND. A typical Segment portion of the BIND map
looks like this:

Segment Type Low High Top

-0004 DATA 000000 000700 000700

-0002 SHARED PROC 001000 001074 001076

+0000 PROC 177777 000000 001000 EMPTY

To calculate the paging disk requirements you first need to determine the
size of each segment, in records. To do this, you take the Top offset for

Second Edition 6-21

Advanced Programmer’s Guide I: BIND and EPFs

J

each negative segment and place it in the formula: (Top + 17777 / 20000) *
10. (All numbers are octal.) Using the BIND map example, you would
calculate:

0004 : (700 + 17777) / 20000) * 10 = (20677/20000) * 10
0002 : ((1076 + 17777) / 20000) * 10 = (21075/20000) * 10

1*10 = 10
1*10 = 10

[l

Therefore, rounded to the nearest whole number, the size of each segment
is octal 10, or decimal 8 records.

To determine the total paging space requirement, you must add the size of
the SHARED PROC segment (in this case, decimal 8 records) to the total
non-shared requirement. To get the total non-shared requirement,
multiply the size of the non-shared DATA segment (in this case, decimal 8
records) by the anticipated number of concurrent users sharing the ‘\
registered EPF, plus 1 user. Concurrent users are those who have the EPF
mapped in their user memory; after execution, an EPF remains mapped
in the user’s memory either until the user reinitializes the process (by
logging out, for example) or until the user explicitly unmaps the EPE If
we assume 30 concurrent users, the calculation (in decimal numbers) for
this example is

8 DATA segment records * (30 + 1 users) = 248 non-shared records

“N
248 non-shared records + 8 SHARED PROC segment records =
256 total records.
In this example, therefore, the extra paging requirement for running this
registered EPF is 256 records.
Using Registered EPFs \

6-22 Second Edition

To use a registered EPE you may need to first check that the EPF has, in
fact, been successfully registered (using the LIST REGISTERED_EPF
command) and check your user search lists (using the

LIST SEARCH_RULES command) to make sure they can access the
registered EPE Once these tasks are completed, you can invoke the
registered EPE.

There are no restrictions on the mixing of EPF types. A registered
program EPF can call routines in registered library EPFs and dynamic
library EPFs. A dynamic program EPF can call routines in registered
library EPFs and dynamic library EPFs. You can maintain otherwise
identical programs and libraries of both types on the system. However,

N\

N

)

)

)

Registered EPFs

EPF registration is most advantageous when a registered program EPF
calls routines in registered library EPFs or PRIMOS direct entries.

Getting Information on Registered EPFs

You can use three PRIMOS commands to check the status of registered
EPFs. These commands are available to all users.

LIST_EPF -REG Command: Use the -REG option of the LIST_EPF
(LE) command to get a listing of all registered EPFs on your system. The
display shows the invocation state of each registered EPF as either
Suspended or Ready. LIST EPF -REG displays information about EPFs
in the system’s registered EPF database rather than registered EPFs
mapped to any given user’s address space. LIST_EPF is documented in
the PRIMOS Commands Reference Guide.

OK, LIST EPF -REG

2 Process-Class Library EPFs.

(registered) (Ready) BOOTLEG. RUN
(registered) (Ready) BOOTLEG. RUN

2 Program-Class Library EPFs.

(registered) (Ready) PRIMIX_ IX CC_LIBRARY.RUN
(registered) (Ready) PRIMIX_IX LIBCURSES.RUN

1 Program EPF.
(registered) (Suspended) CALL_LIB.RUN

OK,

In this example, LIST_EPF -REG shows that CALL_LIB.RUN, a
registered EPF is in the suspended state. This could be due to an
unresolved shared dynamic link or a suspended dependency. To determine

why this registered EPF is suspended, you can use the
LIST REGISTERED_EPF command.

LIST_REGISTERED_EPF Command: Use the

LIST REGISTERED_EPF (LRE) command to get detailed information
on the status of a specific registered EPF on your system. This command
lists the dependencies of a registered EPF, and indicates whether each
dependency is Direct or Indirect. This command also lists the names of
any unresolved entrypoints. This list of unresolved entrypoints lists all
unresolved shared dynamic links; it does not list unresolved per-user

Second Edition 6-23

Advanced Programmer’s Guide I: BIND and EPFs

dynamic links. LIST _REGISTERED_EPF is documented in the
Operator’s Guide to System Commands.

OK, LIST REGISTERED_ EPF

2 Process-Class Library EPFs.

BOOTLEG. RUN (Ready) (Registration # 2)
No resolved/specified dependencies found.
No unresolved entrypoints.

BOOTLEG. RUN (Ready) (Registration # 1)
No resolved/specified dependencies found.
No unresolved entrypoints,

2 Program-Class Library EPFs.

PRIMIX_ IX_CC_LIBRARY.RUN (Ready) (Registration # 1)
No resolved/specified dependencies found.
No unresolved entrypoints.

PRIMIX_IX_LIBCURSES.RUN (Ready) (Registration # 1)
No resolved/specified dependencies found.
No unresolved entrypoints.

1 Program EPF.

CALL_LIB.RUN (Suspended) (Registration # 1)
No resolved/specified dependencies found.

Unresolved Entrypoint List:
BAR
FOO
MOO
OK,

In this example, LIST REGISTERED_EPF shows that three references to

external routines (BAR, FOO, and MOO) could not be resolved during
registration. This could happen because the library EPFs that contain

6-24 Second Edition

)

N

~

ﬂ

)

)

Registered EPFs

these entrypoints have not yet been registered, or it could result from an
error in specifying the names of the dynts when BIND was used to build
the registered EPE. You can use the LIST_LIBRARY_ENTRIES
command to determine which library EPF contains these entrypoints.

LIST_LIBRARY_ENTRIES -REG Command: Use the -REG option of
the LIST LIBRARY_ENTRIES (LLENT) command to display a list of
entrypoints contained in registered library EPFs on your system.

OK, LLENT BOOTLEG.RUN -REG
(ring 3 epf) BOOTLEG.RUN
Ring3 Proc-Class Lib EPF,
1 Total Entrypoints,

1 Selected Entrypoints
QEDSE

LIST LIBRARY_ENTRIES is documented in the PRIMOS Commands
Reference Guide.

EPF$ISREADY Subroutine: Use the EPFSISREADY subroutine to
return the status of a specific registered EPF to a user program.
EPFS$ISREADY returns a value of 1 if the registered EPF is ready and a
value of 0 if the registered EPF is suspended. EPFSISREADY is
documented in the Subroutines Reference II: File System.

Setting Search Rules for Registered EPFs

In order to execute registered EPFs, you must include the -PUBLIC
search rule in your user search lists.

e To execute registered program EPFs, a user’'s COMMANDS search
list must include the ~-PUBLIC rule. This tells PRIMOS to search
the registered EPF database for command names.

* To execute an EPF that dynamically links to registered library EPFs,
a user’s ENTRYS search list must include the ~-PUBLIC search rule.
This tells PRIMOS to search the registered library EPFs for
entrynames during dynamic linking.

The -PUBLIC search rule is included in the default system search rules
for COMMANDS$ and ENTRYS. If you use the default search rules, no
change is necessary.

PRIMOS does not search registered EPFs in a specific order. This

presents a problem if two registered library EPFs contain a routine with
the same name. The simplest solution is to make sure that all registered
EPF routines have unique names. This, however, is not always possible.
When duplicate names are necessary, you can use ~-PUBLIC search rules

Second Edition 6-25

Aadvanced Programmer’s Guide I: BIND and EPFs

Note

6-26 Second Edition

to specify the names of specific registered EPF in each user’s search list,
as follows:

-PUBLIC registered_epf namel
-PUBLIC registered_epf name2
-PUBLIC

In this example, PRIMOS first searches registeredEPF_namel, then
searches registered_epf name2, then searches all other registered EPFs.
You should end a list of -PUBLIC search rules with a -PUBLIC search rule
with no EPF name option. This tells PRIMOS to search all the registered
EPFs.

In most cases, you should put in your search list both a ~-PUBLIC search rule to
access an EPF as a registered EPF and a standard search rule to access the EPF as
a dynamic EPF. This is especially critical for core system libraries. If you do not
include a search rule for the dynamic EPF version, unregistering an EPF library
makes that library inaccessible to all programs.

To make sure that the registered version of an EPF is executed in preference to
the dynamic version, be sure that the -PUBLIC search rule precedes any search
rules that lead to dynamic versions of registered EPFs. For example, suppose you
have placed a dynamic EPF version of the library LIB_A.RUN in a directory
named MY_LIBS. If you later register LIB_A.RUN, you can be sure that
programs link to the registered version by placing the -PUBLIC search rule before
the MY_LIBS >LIB_A.RUN search rule in your ENTRY$ search list.

To list the contents of your search lists, use the LIST SEARCH_RULES
command. To modify your search lists, use the SET_SEARCH_RULES
command. Both commands are documented in the PRIMOS Commands
Reference Guide. You can use the MONITOR_SEARCH_RULES
command to monitor ENTRYS$ search list performance. This command is
documented in the PRIMOS User’s Release Document. For further details
on search rules, refer to the Advanced Programmer’s Guide 1I: File System.

Registered EPF Access

Unlike dynamic EPFs, registered EPFs cannot be ACL protected. This is
because registered EPFs do not reside in the file system. You should be
aware that all users have access to registered EPFs on your system.

¢ All users can display the names of the registered EPFs on your
system using the LIST REGISTERED_EPF and LIST_EPF -REG

commands.
 All users can execute registered program EPFs.

e All users can link to the entrypoints of registered library EPFs.

J

)

N

)

Registered EPFs

If you want to restrict access to a registered EPF, you should code the EPF
so that it must be invoked by a dynamic EPF interlude. You can then
restrict access by setting ACL protection on the interlude.

Invoking Registered Program EPFs

Registered Program EPFs can be executed either as commands or
command functions. The -PUBLIC search rule must be included in your
COMMANDS search list in order for PRIMOS to find and execute
registered program EPFs. If the -PUBLIC search rule is not included or
the EPF is not registered, PRIMOS returns the Not found error message.

In addition to the registered EPF, you may also have other copies of the
same program EPF on your system: a dynamic program EPF version (used
for testing), and a registrable EPF version (the program EPF you
submitted to the System Administrator for registration). Both of these
versions execute successfully, but neither takes advantage of EPF
registration. A registrable EPF executed in this way is mapped and
executed entirely in per-user segments. Because PRIMOS is unable to
share any of the registrable EPF, it executes inefficiently. Therefore, care
should be taken not to execute one of these versions rather than the actual
registered EPF.

If you supply the RESUME command with the complete pathname of the
EPFE, PRIMOS does not use the COMMANDS search list, and therefore
does not execute the registered EPE. It instead executes the pathname
version.

If you incorrectly place the -PUBLIC search rule in the COMMANDS$
search list, PRIMOS may find and execute another version of the program
EPF, rather than the registered EPE The -PUBLIC search rule must be
closer to the beginning of the search list than the name of any directory
that contains a version of the EPF with the same name.

You can call a registered program EPF from another program using the
CP$ subroutine. The EPF$RUN subroutine and the other EPF$
subroutines (EPF$INVK, EPFSMAP, etc.) cannot be used with registered
EPFs. Refer to the Advanced Programmer’s Guide I1I: Command
Environment for further details.

Second Edition 6-27

)

Shared Data

EPFs provide three ways to share data:
e You can share data among programs within a process using a process-class
library EPE.

¢ You can share data among processes using a shared read/write common
area in a registered EPF.

¢ You can access shared data areas in static memory.

This chapter shows you how to use these data sharing methods.

Using Process-class Library EPFs

Process-class library EPFs provide a way to share data among programs within a
single user process. The technique is simple:

e Allocate the shared data structure as a static data area in a process-class
library EPF.

¢ Have one or more subroutines handle access to the data area.
Since the static data in the linkage/data area of a process-class library EPF is

only initialized once per user process, all programs that access the data through
the library subroutines have access to the same data.

In effect, this technique provides automatic dynamic allocation of per-process
shared data areas:
e PRIMOS allocates space for the shared data when it allocates the
linkage/data area of the library EPF.
e PRIMOS initializes the shared data area once per process when it
initializes the library EPF.

The most straightforward technique is to have a library entrypoint to handle each
data manipulation operation: writing to the shared data area, reading the data,

Second Edition 7-1

Advanced Programmer’s Guide I: BIND and EPFs

Note

reinitializing the data, and the like. Programs that access the shared data then do
so by calling these entrypoints. The sample program TUBES_LIB.C below
shows you how to create a library EPF that handles shared data in this way.

Note that your subroutines must provide for the possibility that more than one
program attempts to update the shared data simultaneously. The section
Providing for Simultaneous Updates, below, describes some techniques for doing
this. The sample program TUBES_LIB.C includes provisions for simultaneous
updates.

You must also observe one important restriction when creating process-class
libraries to do this kind of per-process data sharing: because of the restriction on
library class mixing, the library routines that access the shared data must not call
routines in program-class libraries. Remember that language-directed 1/O is
handled by program-class subroutines, so your routines should not do any
language-directed 1/O. For further details on these subjects, refer to Chapter S.

As of Rev. 23.0, PRIMOS does not provide explicit means to allocate and link to a
common area dynamically. The technique given here implicitly provides much of the
same functionality for per-process shared data. The subroutine or subroutines that access
the data area act as a gateway for EPFs that need to use the data.

Using Shared Read/Write Common Areas

7-2

Second Edition

Registered EPFs give you the ability to create shared read/write common areas.
Since shared areas are not reinitialized for each user, they can be used to share
data among several user processes.

The technique is much like the one used to share data among programs using a
process-class library EPF, but in this case, you can use either a library EPF or a
program EPF,

1. Write a routine or routines that manipulate data in a common area data
structure.

2. Use BIND to build a registered EPF with these routines. Use the -SHARE
and —~ACCESS options of the ALLOCATE subcommand to define the data
structure as a shared read/write common area. The section Creating a
Shared Common Area With BIND, below, shows you how to do this.

The simplest approach is to create a registered library EPF much like the
process-class dynamic library EPF described in the previous section. You could,
for example, write one routine to update the data structure and another to return
its contents. You can test such a library as a process-classdynamic library EPF
that shares data among programs and then rebuild it as a registered library EPF

J

)

Shared Data

to share data among processes. The program examples below show a library
built and tested in this way.

If you create a registered program EPF, you can write an interface that allows
users to read and write to the common area. However, you may find a program
EPF more difficult to test and debug than a library EPF. A more flexible
technique would be to put the user interface in a program EPF and the shared
data manipulation routines in a registered library EPF.

Again, you must write code that deals with simultancous attcmpts to update the
common area. See the section Providing for Simultaneous Updates, below, for
information on this topic.

Creating Shared Common Areas With BIND

You can have BIND allocate a shared read/write common data area using the
—SHARE and —~ACCESS options of the ALLOCATE subcommand. The format
is

ALLOCATE symbol_name size-SHARE -ACCESS READ/WRITE

The arguments are

symbol_name The name by which the shared data
structure is referenced in the EPE

size A decimal number that gives the size of
the data area in 16-bit halfwords.

-SHARE Tells BIND to place the data area in a
shared segment.

-ACCESS READ/WRITE Sets read/write access to the shared
area.

You must give the ALLOCATE subcommand before you load any routines that
reference the common data area.

Debugging an EPF that shares data in this way can be difficult, since you cannot
create a shared read/write common area in a dynamic EPE. If you are creating a
library EPF, one possibility is to create a process-class dynamic library EPF first,
as described in the previous scction. You can test the library’s ability to share
data among programs within a single process. You can then rebuild the library
as a registered EPF, allocating the shared data structure as a shared read/write
common area. You can then test its ability to sharc data among processes.

Second Edition 7-3

Advanced Programmer’s Guide I: BIND and EPFs

Using Static Shared Data

7—4 Second Edition

Allocating static segments for shared data is inconsistent with the dynamic
approach encouraged by EPFs and is not recommended when other techniques
are available. The SYMBOL subcommand of BIND does, however, provide you
with the means to build an EPF that addresses statically allocated data.

The technique is as follows:

1. Allocate the appropriate static memory for your data object.
2. Initialize the data area either at system coldstart or at user login.

3. When using BIND to build an EPF that addresses the shared data area, use
the SYMBOL subcommand to specify the address of the data area.

Allocating Space

You allocate space for the shared data object in static segments. For data that is
to be shared among programs within a process, you allocate the segments from
per-user static memory (segment numbers between 4000 and the first dynamic
segment). Remember that PRIMOS does not manage access to this memory for
you. You must take care to see that your data area does not conflict with
memory used by other programs.

For data that is to be shared among processes, you use shared static segments.
Consult with the System Administrator to find out which segments are available
for sharing. The System Administrator must then make the shared segments
available at system coldstart using the SHARE command.

Initializing the Data

You must explicitly initialize the shared data area because PRIMOS does not
initialize static segments when initializing an EPF.

For data in per-user static segments, you must be sure that each user’s data area
is initialized before its first use during a terminal session. The simplest way to
do this is to write an initialization program that writes the correct initial values to
the shared data area. Have each user’s LOGIN.CPL invoke this initialization
program so that it is run once at each login or command environment
initialization.

For data in shared static segments, perform the initialization at cold start when
the scgments are shared. You can do this in two ways:

e Run an initialization program at cold start. The System Administrator or
PRIMOS.COMI should invoke the initialization program immediately after
the SHARE command.

J

)

D)

Shared Data

e Create a static-mode memory image with SEG and load it with the SHARE
command. Consult the SEG and LOAD Reference Guide for information
about how to do this.

Using the SYMBOL Subcommand

When you use <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>